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MOTIVATION Alzheimer disease (AD) is a highly complex and debilitating neurodegenerative disorder that
has been the subject of extensive research and public attention in recent years. The pathogenesis of AD
involves intricate changes to gene networks occurring across multiple cell types. Investigating individual
genes or focusing on single cell types alone may therefore present limitations to fully comprehending the
disease.We sought to develop amore comprehensive approach to analyze AD, one that can simultaneously
capture the complexity of gene interactions and cellular heterogeneity.
SUMMARY
The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell
types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework
for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering,
scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying
the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct
cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to
overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incor-
porating prior knowledge further enables the framework to yield more biologically interpretable results.
Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of
our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling
the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.
INTRODUCTION

In recent years, the advancement of single-cell sequencing tech-

nology has enabled the analysis of single-cell data to reveal

meaningful biological information at the cellular level. Specif-

ically, single-cell RNA sequencing (scRNA-seq) enables the

sequencing of cells that are hard to retrieve or challenging to

isolate.1 This unprecedented resolution into cell states provides

us with new insights into the function and dysfunction of cells,2

which is particularly necessary for complex diseases such as

Alzheimer disease (AD), because changes in gene expression

are related to cell type.3,4 Recently, there has been a surge of sin-

gle-cell studies aimed at understanding the mechanism of AD

based on transcriptional profiles,3,5,6 which have provided valu-
Cell Rep
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able insights into cellular diversity. However, these studies often

lack an integrative analysis of functional gene modules (FGMs),

which can reveal how genes work together to regulate biological

processes. A recent study used a network-based approach to

identify FGMs involved in the selective vulnerability of neurons

in AD, demonstrating the importance of analyzing FGMs to

gain insights into the underlying mechanisms of complex

diseases such as AD.7 FGMs are groups of genes that work

together to perform a specific biological function and can exhibit

complex coexpression or co-regulation patterns, rather than

solely comprising differentially expressed genes.8,9 Moreover,

these local patterns are often cell specific and may change

with disease progression.10–12 Therefore, it is crucial to iden-

tify FGMs and their corresponding functional cell groups
orts Methods 4, 100742, April 22, 2024 ª 2024 The Author(s). 1
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simultaneously in studies of complex diseases. In this study, we

focus on FGMs as gene network biomarkers to investigate their

potential role in AD.

Unlike clustering methods, which can only conduct clustering

in either cell space or gene space, biclustering can identify FGMs

and their corresponding functional cell groups simultaneously. A

cells-genes pair is called a bicluster, and the genes in a specific

bicluster can be deemed as an FGM shared across related cells.

Therefore, through biclustering, we can easily identify FGMs and

find the cell populations in which they are active at the same

time. It is worth noting that in the complex cell machinery, multi-

ple FGMs are active in a cell group, and different cell groups may

share a common FGM (Figure S1). Fortunately, biclustering with

overlapped biclusters can easily capture such complex fea-

tures.13 Through biclustering, cell population-specific gene

network biomarkers and potential gene-cell connections can

be identified in a single pass.

Although biclustering is an exquisite tool, it encounters some

problems when applied to scRNA-seq data. First, batch effects,

due to laboratory conditions, reagent lots, and personnel differ-

ences, are widespread and critical to address.14 If batch effects

are not properly accounted for, then biclustering algorithms may

falsely identify batch-specific coexpression patterns instead of

true biological patterns, leading to incorrect conclusions. Sec-

ond, due to low mRNA content per cell and molecule losses dur-

ing the experiment (known as ‘‘dropout’’), the gene expression

matrix has a substantial amount of zero read counts that can

cause problems for biclustering algorithms that assume contin-

uous expression values.15 Biclustering algorithms that are not

designed to handle dropout may either ignore the zero read

counts, leading to incomplete biclusters, or consider them to

be low-expressed genes, leading to spurious biclusters. Further-

more, the selection of a specific scRNA-seq protocol (e.g.,

droplet-based methods such as 10X Genomics, plate-based

methods such as Smart-seq2) can significantly influence both

the magnitude and characteristics of dropout events. Moreover,

variations in sequencing depth can introduce variability in the

detection limit of low-abundance transcripts, thereby resulting

in diverse levels of dropout occurrences. Consequently, the

development of a biclustering method that is adaptable to

different sequencing protocols, accounting for their distinct

dropout effects, would render it more widely applicable and rele-

vant for comprehensive analysis of scRNA-seq data.

Although algorithms have been designed to address these

inherent problems pervasive in scRNA-seq data, they have typi-

cally focused on improving the performance of the biclustering

algorithm in one particular aspect—cell clustering, FGM finding,

or the simultaneity of coclustering.16–18 However, in complex

polygenic diseases, functionally related potential cell groups

are finely divided, cell-type conditional gene coexpression pat-

terns are complicated, and the cell-gene correlation changes

throughout the progression. Therefore, an algorithm with better

performance in functionally related cell group discovery, FGM

finding, and cell-gene correlation pattern detection would help

to advance research into these diseases.

Here, we propose a single-cell Bayesian biclustering (scBC)

method that can handle the problems mentioned above. We

use a variational autoencoder (VAE) to model gene expression
2 Cell Reports Methods 4, 100742, April 22, 2024
in single cells, enabling us to gracefully remove batch effects

and impute missing data.19 By estimating the variational poste-

rior distribution, we can obtain a low-dimensional representation

of each cell that is conditioned on the batch annotation, enabling

us to obtain batch-corrected expression through the generating

process. In addition, we can manually control the procedure of

dropout during the generating process, leading to the predrop-

out imputed expression. By reconstructing the original data

matrix in this way, we can obtain more precise results when con-

ducting biclustering. Furthermore, we incorporate existing bio-

logical information (e.g., gene interaction and regulation) into

the biclustering procedure through the Bayesian framework,

which guides variable selection to more likely capture pathway

information and true biological signals.20 The flowchart of our

procedure is depicted in Figure 1.

RESULTS

scBC outperforms other methods on FGM detection
To investigate whether scBC can detect biologically meaningful

FGMs, we analyzed four highly heterogeneous single-cell data-

sets obtained from different parts and tissues of the human

body under different pathological conditions (purified peripheral

blood mononuclear cell dataset, PBMC; cardiac cells with anno-

tation from Heart Cell Atlas, HEART; scRNA-seq of lung adeno-

carcinoma, LUAD; and scRNA-seq of primary breast cancer. An

outlook of these datasets can be found in Table S1). Figure 2A

illustrates the preprocessing procedure, and the STAR Methods

section provides further details. To verify the feasibility of our

method, we compared scBC with six traditional biclustering al-

gorithms, namely CC,21 xMotif,22 FABIA,13 Bimax,23 PLAID,24

and GBC,20 and two newly developed biclustering algorithms in-

tended for scRNA-seq data: QUBIC217 and DivBiclust.16 We

also incorporated one brand new VAE architecture, autoCell,25

into the data reconstruction procedure to see how scBC outper-

forms alternative choices. For methods that need to set the

number of biclusters in advance (e.g., xMotif, CC, Bimax,

FABIA, GBC, and scBC), we set the maximum number of biclus-

ters as the number of cell types (based on cell label). We then

conducted Gene Ontology (GO) enrichment analysis for each

FGM detected by each method (see STAR Methods), and used

�log10(p) (Benjamini-Hochberg [BH] adjusted) as the enrich-

ment score. Methods that failed to detect any bicluster were as-

signed a score of zero (Figures 2B–2D). Since DivBiclust is a bi-

clustering-based method for cell population discovery that only

outputs the cell clustering result, it was overlooked in FGM iden-

tification comparisons.

We found that the FGMs detected by scBC were consistently

more significant than those detected by other algorithms, even in

highly heterogeneous settings (Figure 2B; Table S2). In the

PBMC dataset, all of the methods were able to capture the spe-

cific FGM, indicating a relatively simple data structure. Among

these methods, scBC performed the best, followed by CC. auto-

Cell, GBC, xMotif, and FABIA also performed well, but PLAID,

Bimax, and QUBIC2 gave unsatisfactory results. In the HEART

dataset, both xMotif and Bimax failed to identify any biologically

meaningful gene modules, whereas PLAID exhibited limited

effectiveness (Figure 2B). These results suggest that biclustering



Figure 1. Flowchart of scBC procedure

The scRNA-seq data with high proportion of dropout and batch annotation (if available) is first fed into the VAE. We use xgn to denote the gth gene in cell n. sn is an

extra dimension added for each cell to denote the batch annotation. Through the training process, we can get a low dimensional approximate posterior distribution

qðznjxn; snÞ conditional on sn. At the inference stage, the low dimensional representation of each cell zn is taken to reconstruct the expression data through nonlinear

mapping. The likelihood function of gene g from cell n ispðxji
��rj ;mjiÞ =

r
1=2

jffiffiffiffi
2p

p exp
n
� rjðxji � mjiÞ2=2g. To reduce randomness, we decompose the parametermatrixm

of the reconstructed datamatrixX rather than directly onX. Gene correlation prior is used to guide the variable selection at the gene level, and results are presented

as matrix W, with each column denoting a module. Matrix Z is the result at the cell level, with each row representing a functionally related cell group.
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on cardiac tissue data presents greater challenges. However,

GBC and CC demonstrated satisfactory performance, ranking

second only to scBC and autoCell. Notably, scBC and autoCell

exhibited remarkably similar and outstanding performance in

this dataset (Figure 2B). However, in the LUAD dataset, which

specifically pertains to the tumor-associated immunemicroenvi-

ronment, the performance of autoCell significantly deteriorated

and lagged behind that of CC and GBC. This observation sug-

gests a relatively weaker and less robust performance for auto-

Cell in this context (Figure 2B). In the breast cancer dataset,

where sample size was minimal (only up to 300 cells after nega-

tive sampling) and tumor cells were mixed with normal cells,

many methods failed to detect meaningful FGMs (Figure 2B).

Even under such challenging conditions, scBC was able to iden-

tify more biologically meaningful FGMs. Despite both CC and

GBC demonstrating similar excellent performance in the first

few conditions, CC was far inferior to GBC in the breast cancer

dataset. Interestingly, despite being a biclustering method de-

signed for FGM identification, QUBIC2 did not exhibit remark-

able performance in these datasets, particularly in the first three

datasets. This could be attributed to the ability of QUBIC2 to only

detect biclusters of relatively small scale, indicating its suitability

for analyzing smaller datasets and lack of versatility. Overall,
scBC demonstrated robust superior performance in FGM detec-

tion across highly heterogeneous conditions.

Since scBC is composed of several building blocks, we con-

ducted an ablation study on all four highly heterogeneous data-

sets to investigate whether there are redundant components

and determine which component contributed the most to the

enhanced performance. In datasets of normal tissue, both the

introduction of prior information and data reconstruction proved

beneficial to performance. Furthermore, combining both strate-

gies led to a more significant improvement (Figures S2A and

S2B). For datasets of tumor-related tissue, it is intriguing to

observe that a single strategy resulted in a detrimental perfor-

mance, particularly the data reconstruction strategy. However,

combining the two strategies led to an increased performance

(Figures S2C and S2D). This finding suggests that due to the

complexity of disease-related data, a single strategy is insuffi-

cient for these datasets. It also underscores the importance of

combining the two strategies and highlights the potential of

scBC in analyzing datasets related to complex diseases.

Benchmarking clustering results at cell level
Intuitively, cell groups identified by biclustering are more func-

tionally related since each group corresponds to a similar
Cell Reports Methods 4, 100742, April 22, 2024 3



A

B

C

D

E

F

G

H

I

(legend on next page)

Please cite this article in press as: Gong et al., Single-cell biclustering for cell-specific transcriptomic perturbation detection in AD progression, Cell
Reports Methods (2024), https://doi.org/10.1016/j.crmeth.2024.100742

4 Cell Reports Methods 4, 100742, April 22, 2024

Article
ll

OPEN ACCESS



Please cite this article in press as: Gong et al., Single-cell biclustering for cell-specific transcriptomic perturbation detection in AD progression, Cell
Reports Methods (2024), https://doi.org/10.1016/j.crmeth.2024.100742

Article
ll

OPEN ACCESS
FGM. Functionally related cells are also naturally more likely to

belong to the same cell type since they have similar functions,

although there can be exceptions. In this study, we investigated

the clustering performance at the cell level to determine whether

scBC provides more meaningful clustering results, even when

focusing solely on the cell-level clustering results. As mentioned

earlier, biclustering results may have overlap between each

bicluster, which can result in single cells belonging to different

groups. However, the results from scBC and GBC enable us to

assign each cell to its most involved groups, which is also

applied to the autoCell-based framework. For the remaining

methods with less well-defined cell-level clustering results, we

used the Markov clustering algorithm (MCL)26 to transform the

biclustering results, fully using the information from the bicluster-

ing results (see STAR Methods). We used the adjusted Rand in-

dex (ARI),27,28 the Fowlkes-Mallows score (FMI),29 and the

Adjusted Mutual Information (AMI)30 as recommended metrics

to quantify the agreement between clusters (see STAR

Methods). Their values range from �1 to 1, with higher values

indicating better performance. We evaluated the clustering per-

formance at the cell level using the four real-world datasets.

The cell clustering results obtained by scBC are consistently

more precise than those of other methods across different het-

erogeneous conditions (Figures 2C–2E; Tables S3–S5). We

found that Bimax performed theworst, not only in FGMdetection

but also cell clustering in all of the datasets. Although CC per-

formedwell in FGMdetection in the PBMCdataset, it was unable

to perform cell clustering tasks simultaneously. autoCell per-

formed well in PBMC, HEART, and LUAD datasets, second

only to scBC (Figures 2C–2E). In the HEART dataset, PLAID,

xMotif, and Bimax were invalid (Figures 2C–2E), similar to the

LUAD and breast cancer dataset. Notably, in the first three data-

sets, we observed that scBC was capable of capturing a pattern

wherein certain cell populations consisted of a substantial num-

ber of a major cell type and a relatively smaller number of other

cell types, whereas autoCell failed to do so (Figures 2F–2H).

This indicates that scBC can accurately identify cell populations

that comprise a combination of major and rare cell types. In the

breast cancer dataset, QUBIC2 ranked second only to scBC in

terms of ARI and AMI, but slightly outperformed scBC in terms

of FMI (Figures 2C–2E), suggesting its suitability for analyzing

small-scale data, which aligns with its performance in FGM

detection. PLAID, xMotif, Bimax, and FABIA failed to cluster cells

into functionally related groups because they cannot detect

FGMs in the dataset. Unexpectedly, despite being a bicluster-

ing-based method intended for cell clustering, DivBiclust
Figure 2. scBC outperforms other methods in FGM detecting and cell

(A) The preprocess procedure of the 4 datasets. In each dataset, highly variable

databases such as GO or the Kyoto Encyclopedia of Genes and Genomes. Cells

datasets for repetition.

(B), Enrichment score of different methods in 4 highly heterogeneous datasets. Th

score (�log10(p), BH adjusted) of different methods. The error bar stands for SD

(C–E) Benchmarking clustering results at cell level with ARI (C), AMI (D), and FM

(F–I) Cell representation of UMAP dimensionality reduction. In addition to the refer

highest ARI in the last subsample dataset (F, PBMC; G, HEART; H, LUAD; and

Figures S3–S6. Some methods output too many categories, so that we merge som

with black dotted lines are cell populations’ patterns that are correctly identified
demonstrated limited potential in the PBMC and HEART data-

sets and even failed to identify cell clusters in the LUAD and

breast cancer datasets (Figures 2C–2E). This could be attributed

to the exceptionally high dropout rate in these datasets and the

added complexity of noise in the tumor-related datasets. In a

nutshell, these results demonstrate that scBC can capture the

complex patterns involved in clustering functional cell groups

and is more robust and precise than other methods across het-

erogeneous datasets.

scBC performs best on a bicluster level
Gene coexpression patterns differ across different cell types.

These complex gene-cell correlations are of particular interest

to us. When we compare the performance of different bicluster-

ing methods at the bicluster level, we pay more attention to

whether the method can detect cell subgroups with similar

FGMs and present these cells and FGMs at the same time.

Once such a biosignal is found, we can make guidelines for

downstream analysis. In this study, we introduced two evalua-

tion methods, 1-CE and F score, to compare the performance

of our scBC with other methods (see STAR Methods for simula-

tion detail). Since DivBiclust only output cell-level results, it was

not included in this benchmarking. We used simulated datasets

with different dropouts under varying scales to elucidate how the

performance of these methods varies along with the conditions

(Figure 3; Tables S6–S11).

Since different scRNA-seq protocols often produce data with

varying sparsity, our simulation started from dropout = 0.2 and

explored with a step size of 0.1. When dropout was >0.5 we

set step = 0.05 to get a more detailed performance variation in

highly sparse cases. The results demonstrate that scBC consis-

tently outperformed othermethods in uncovering complex gene-

cell correlation patterns, particularly with respect to F score, and

the dropout rate was not excessively high (Figures 3C–3E, and

3G). FABIA and autoCell exhibited the second-best perfor-

mance, with FABIA performing better with respect to F score

(Figures 3B–3G). However, as the dataset size increased, the

performance of FABIA became increasingly unstable (Figure 3F).

PLAID showed an advantage in cases with minimal dropout,

but its performance deteriorated rapidly as the dropout rate

increased (Figures 3B–3D, and 3F). Conversely, methods such

as CC, xMotif, and QUBIC2 were mostly ineffective across all

of the settings (Figures 3B–3G). As expected, the ability of all

of the methods to detect biclusters generally decreased with

increasing dropout rate and dataset size (Figures 3B–3G). Never-

theless, scBC consistently outperformed other methods in the
clustering in 4 real-world datasets

genes are filtered out and used to extract prior coexpression information in

are sampled along with the highly variable genes to generate 10 subsampled

e x axis represents different datasets and the y axis represents the enrichment

of the results of 10 subsamples.

I (E) in the 4 datasets.

ence labels, shown here are the methods with highest ARI (scBC) and second-

I, breast cancer). The whole comparison of cell clustering can be found in

e into ‘‘others’’ whose number of cells is <1% of the total sample. Highlighted

by scBC but not identified by the second-best method.
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majority of cases, highlighting its superior reliability in capturing

intricate gene-cell correlation patterns.

scBC uncovers the pathway perturbation in AD
progression
Neuropsychiatric disorders involve complex polygenic determi-

nants as well as brain alterations.31 Biclustering methods can

reveal cell population-specific gene coexpression patterns and

discover potential gene-cell connections, making them inher-

ently more suitable for the analysis and mining of complex poly-

genic disorders such as neurodegenerative diseases. At the

same time, single-cell-level resolution is critical for neurodegen-

erative diseases such as AD because changes in gene expres-

sion are related to specific cell types.3 Therefore, scBC is more

reliable for analyzing the single-cell data of diseases with com-

plex traits due to its excellent performance.

AD is a neurodegenerative disorder associated with aging,

characterized by the accumulation of amyloid plaques and

neurofibrillary tangles in the brain parenchyma. Recent research,

using a single-nucleus RNA-seq (snRNA-seq) dataset from AD

patients, has shown that AD is a complex disease involving mul-

tiple brain cell types, as evidenced by marker gene expression.3

In the present study, we aim to investigate further transcriptomic

perturbations during AD progression using gene network bio-

markers identified by our scBC model. This dataset includes

48 postmortem human brain samples, with or without AD. The

pathology groups are defined based on several pathological

traits (Table S12): ‘‘no pathology’’ (no amyloid burden, no neuro-

fibrillary tangles, and no cognitive impairment), ‘‘early pathol-

ogy’’ (amyloid burden, but modest neurofibrillary tangles and

modest cognitive impairment), and ‘‘late pathology’’ (higher am-

yloid burden, increased neurofibrillary tangles, global pathology,

and cognitive impairment) (Figure 4A). After subsampling, we

ensured that cells from different donors were well blended and

not dominated by any one donor or biased by sex (Figures 4B–

4D). We also ensured that cells of the same type across individ-

uals were consistent (Figures 4E and 4F). To make sure that the

results of multiple biclustering analyses corresponded with one

another, we matched biclusters in different pathological pro-

gression stages and merged some FGMs according to the de-

gree of overlap in gene sets (Figure 4G; STAR Methods). We

found that the overlap of each FGM, as expected, is consider-

able (Figure 4H).

It is commonly believed that multiple FGMs can be simulta-

neously active in one cell type, and a single FGM can be shared

across different cell types, but the composition percentage in

different cells will vary. Our method, scBC, captured this struc-
Figure 3. scBC performs best on a bicluster level

(A) Data simulation process. The parameter m is computed by the multiplicative

generating X, each element is generated from NB
�
rj;

1
1+e�mji

�
. To simulate different

The implementation of dropout is to perform Bernoulli censoring. See STAR Met

(B–G) Performance of different methods under different conditions. For each plot

performance (1-CE or F score). We ran 100 independent simulations for each set

calculated across repeated simulations. (B) 1-CE of different methods under var

score of different methods under various dropout setting with simulated data scale

setting with simulated data scale: p=3000, n=600 and L=4. (E) F score of differe

n=600 and L=4. (F) 1-CE of different methods under various dropout setting with s

under various dropout setting with simulated data scale: p=6000, n=1500 and L=
ture perfectly (Figures 5A–5F), indicating that it is very suitable

for such analysis. In this study, we focused on the perturbation

of FGMs for each cell type during the progression of AD to

gain a better understanding of the mechanisms underlying AD

and to provide potential recommendations for therapy. To clarify

the functional changes represented by specifically altered

FGMs, we performed enrichment analysis of specific gene sets

before and after a progression stage (see STAR Methods for de-

tails) to identify associated pathways that are disrupted during

the progression (Figures 5G–5K). The complete enrichment anal-

ysis results can be found in Table S13.

For astrocytes and oligodendrocyte precursor cells (OPCs),

FGM perturbation occurs almost only at early pathology

(Figures 5A and 5F), indicating transcriptional patterns have

largely changed in these two cell types before an individual

develops severe pathological features, which is consistent

with previous research.3 Inhibitory neurons’ change in FGM

throughout the disease progression is minimal (Figure 5C), indi-

cating that this cell type does not have many alterations in tran-

scriptional patterns during AD progression.

Astrocytes are involved in neuronal trophic support, extracel-

lular ion homeostasis, and brain fluid balance.32 Energy meta-

bolism is largely altered in AD astrocytes (Figure 5G), indicating

the inflammatory state of the brain following injury and neurode-

generation since astrocytes are a central driver of energy ho-

meostasis in the brain, which is also mentioned in previous

studies.32,33 Consistent with previous studies, we found that

ion transporters are dysregulated in AD astrocytes (Figure 5G).

At the same time, we also found that pathways related to myeli-

nation and neuron ensheathment are altered with the progres-

sion of AD (Figure 5G).

It has been found that gliogenesis and neuron ensheathment-

related pathways are largely impaired in AD progression.34 We

found the same conclusion in the progression of AD pathology

in excitatory neurons (Figure 5H). However, the transition of

FGM composition in excitatory neurons from the normal state

to the early-pathology state appears to be relatively subtle, in

comparison to the significant change observed from the early

stage to the late stage (Figure 5B). This suggests that the major

perturbation of FGMs in this cell type primarily occurs during

the late-pathology state. Another continuous change in excit-

atory neurons in AD progression is a general dysregulation

in kinase activity (Figure 5H), which is closely related to

neuronal DNA damage, well known to occur in AD neurons.35

Previous studies mentioned that the immune response is

also affected in the progression of AD.32 Here, we identified a

specific gene in late pathology, VSIG4 (see Table S13) that
model m = WZ. The prior edge information is generated along with W. When

batches, we divided the dataset into 3 parts, with different intensities of noise.

hods for details.

, the x axis represents the dropout rate and the y axis represents the quantified

ting; the data points represent mean value and the error bars represent the SD

ious dropout setting with simulated data scale: p=1000, n=300 and L=3. (C) F

: p=1000, n=300 and L=3. (D) 1-CE of different methods under various dropout

nt methods under various dropout setting with simulated data scale: p=3000,

imulated data scale: p=6000, n=1500 and L=5. (G) F score of different methods

5.
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demonstrated significant changes in Alzheimer’s disease (AD)

progression from early to late pathology. VSIG4 encodes a

protein that is known to act as a negative regulator of T cell re-

sponses and is closely associated with impaired immune

response. (Figure 5H). We also found that the cellular cation ho-

meostasis pathway and synapse function are altered in the pro-

gression from normal to early pathology (Figure 5H).

Similar to excitatory neurons, pathways associated with kinase

activity are also continuously altered throughout AD progression

in microglia (Figure 5I). The cytokine-mediated signaling pathway

is altered in early pathology (Figure 5I), which may be related to

changes in the immune response in AD progression and is also

in accordancewith previous research.32 Pathways related to glio-

genesis and myelination also altered throughout the disease pro-

gression inmicroglia (Figure 5I), which is similar to astrocytes and

excitatory neurons. Cell migration-related pathways are dysregu-

lated in the late AD microglia (Figure 5I), which is also consistent

with several studies3,5,36,37 and largely related to microglial pla-

que clustering phenotypes, a phenomenon of inappropriate inter-

actions with amyloid. The response to fatty acid becomes odd in

early AD microglia (Figure 5I), which is also an indicator of lipid

metabolism dysfunction. We also find cell chemotaxis becomes

abnormal in late AD microglia (Figure 5I), indicating an inflamma-

tory state in AD microglia.

We observed that in oligodendrocytes, the main changes in

FGMs during AD progression occurred in myelination-related

and synaptic signaling-related pathways (Figure 5J). Sincemem-

ory preservation is thought to require new myelin formation, the

impaired capacity of oligodendrocytes to adaptively monitor

neural activity and facilitate myelin remodeling may govern

cognitive decline in AD.38 Moreover, synaptic signaling and

axon development are critical for the transmission of excitement

in the nervous system, and dysregulation of these processes can

result in slower propagation of neural excitation. The changes in

FGMs in oligodendrocytes are directly related to the reduction of

nervous system excitability. Previous research also suggests

that changes in oligodendrocytes may affect the function of

other cells in the CNS.39–42 Thus, targeting oligodendrocytes

may be a promising strategy for the treatment of AD and other

neurological disorders.
Figure 4. Overview of the subsampled AD dataset

(A) Clinicopathological variables (columns) of 48 individuals (rows). Since the lower

consistent with other indicators, so as tomore intuitively show the differences betw

global cognitive function (last valid score); gpath, global AD pathology burden; g

tangle burden; plaq_n, neuritic plaque burden; Tangles, neuronal neurofibrillary t

(B) Uniformmanifold approximation and projection (UMAP) visualization of all cells

are well blended. Color bar at the right represents the fraction composition of ce

(C) Same UMAP visualization as (B), but colored by sex. Color bar at right repres

(D) The proportion of cells provided across individuals (columns). Bars represent th

the corresponding value exceeds (blue-green) or does not exceed (rose red) the

indicates the average.

(E) Fraction of cells of each type isolated from each individual (columns; n = 48).

(F) Fraction of cells of each type isolated across all (n = 48), no-pathology (n = 2

(G)Merge result between different biclusters. Gene sets from different biclusters in

FGM.

(H) The overlap of FGMs. The FGMmarked with a solid black dot below the bar gr

black transparent dot indicates that it is not included. For example, the first bar ch

any other FGMs is 93. This result shows that the overlap between different FGM
OPCs, which are distributed throughout gray and white mat-

ter, are thought to dynamically sense and modulate neural activ-

ity,41 as oligodendrocytes do. Not surprisingly, then, pathways

related tomyelination and the ensheathment of neurons become

abnormal alongwith the progression of AD (Figure 5K). Pathways

related to ion transportation are also dysregulated, providing

support for previous findings that genes related to ion channels

are dysregulated in AD OPCs.3,5 In addition, pathways related to

kinase activity and cellular cation homeostasis are altered at the

early stage in AD progression (Figure 5K).

Except for inhibitory neurons, which did not change signifi-

cantly throughout disease progression, several other cell types

exhibited specific FGM perturbations, highlighting the impor-

tance of single-cell analysis. Notably, we observed that path-

ways related to myelination and gliogenesis were more or less

altered across all of these cell types, indicating similar alterations

among AD-associated cells and suggesting that AD progression

is largely related to dysregulation of this pathway, which was

further confirmed in a recent study.43

Based on our findings, GBC exhibits relatively stable perfor-

mance in FGM identification and ranks second only to scBC in

disease-related datasets (Figure 2B). To further explore this,

we conducted an analysis on the AD dataset using GBC with

the same pipeline (STAR Methods). The results revealed that

FGM perturbations were predominantly observed in the late-

pathology stage across all cell types, except for OPCs

(Figures S7–S12). This finding contradicts previous reports

indicating widespread transcriptional changes occurring in

the early stages of AD.3 Furthermore, the enrichment analysis

of perturbed FGMs identified by GBC yielded distinct results

compared to scBC (Figures S7–S12) and was supported by little

evidence from relevant studies. These results further highlight

the unique advantages of scBC.

Sex-specific differential response in late AD microglia
revealed by scBC
We observed that when the data were divided into pathology

groups, cells from different sexes exhibited good merging in

the no-pathology and early-pathology groups, but not in the

late-pathology group (Figure 6A). As a result, we further stratified
the value, themore serious the disease, here, we use its opposite number to be

een different pathology groups. Amyloid, overall amyloid level; cogn_global_lv,

path_3neocort, global measure of neocortical pathology; NFT, neurofibrillary

angle density.

(n = 7,063) indicates cells from different donors of different pathological states

lls under different pathology.

ents the fraction composition of cells of different sexes.

e fraction of cells corresponding to each individual. Bar color indicates whether

average value measured across all of the donors in the row. Red dashed line

4), early-pathology (n = 15) and late-pathology (n = 9) individuals.

different pathology groups labeled with the same color are combined as a new

aph indicates that it is included in the comparison, and the FGMmarked with a

art indicates that the number of genes appearing in FGM1 but not appearing in

s is considerable.
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Figure 5. scBC uncover the pathway perturbation in AD progression

(A–F) Perturbation of FGM composition in each cell type during AD progression. Each pie chart quantifies the FGM composition of a cell under a specific

progression condition. The outer red circles indicate FGMs whose composition is increasing compared to the previous stage. The inner black circle represents

FGMs whose composition is decreasing compared to the later stage. (A) Perturbation of FGM composition in astrocytes. (B) Perturbation of FGM composition in

excitatory neurons. (C) Perturbation of FGM composition in inhibitory neurons. (D) Perturbation of FGM composition in microglia. (E) Perturbation of FGM

composition in oligodendrocytes. (F) Perturbation of FGM composition in oligodendrocyte precursor cells.

(G–K) Results of enrichment analysis of FGMs altered in 2 phases. Orange represents the specific FGM of the later stage, and blue represents the specific FGMof

the previous stage, both representing the set of genes that are perturbated during the progression. (G) Results of enrichment analysis of FGMs altered in as-

trocytes. (H) Results of enrichment analysis of FGMs altered in excitatory neurons. (I) Results of enrichment analysis of FGMs altered in microglia. (J) Results of

enrichment analysis of FGMs altered in oligodendrocytes. (K) Results of enrichment analysis of FGMs altered in oligodendrocyte precursor cells.
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the cells by sex to examine the differences in FGM composition

between sexes using the scBC results. The stratified results re-

vealed that in the no-pathology and early-pathology groups,

FGM compositions remained consistently similar across sexes
10 Cell Reports Methods 4, 100742, April 22, 2024
and aligned with the findings from the combined analysis

(Figure S13). However, in the late-pathology group, most FGM

compositions were consistent between different sex groups,

except for microglia (Figure 6B). Although there appeared to
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Figure 6. Sex-specific differential response in late AD microglia revealed by scBC

(A) UMAP visualization of cells from different pathology groups and colored by sex. Color bar at right represents the fraction composition of cells from different

sexes.

(B) FGM composition in each cell type in late-pathology group, stratified by sex. Each pie chart quantifies the FGM composition of a cell type. Microglia rep-

resented an obvious difference of FGM composition in different sexes and is highlighted in the plot.

(C) Heatmap of �log10 transformed p values (BH adjusted) for the top enriched pathways from sex-specific perturbed FGMs along with the previous combined

result. The blue box indicates perturbed pathways that aremore significant in themale group, whereas the green box indicates perturbed pathways that are more

significant in the female group. Asterisk in the tile denotes significance (adjusted p < 0.05).
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be variations in the proportion of FGMs in oligodendrocytes, the

perturbed FGMs compared to the previous pathology stage re-

mained the same, thus not influencing the enrichment results.

The sex-specific differential response in AD microglia is also

widely reported in previous research,44–46 proving the reliability

of the scBC findings. To further investigate sex-specific pathway

perturbations in late AD microglia, we performed an enrichment

analysis on the perturbed FGMs in different sexes and selected
the top enriched pathways in conjunction with the previously

combined ones for comparison.

It is intriguing to observe that the perturbed pathway of em-

bryonic organ development, which initially seemed unrelated

to the function of microglia, was not detected in either sex

group in the combined analysis (Figure 6C). In addition, the dif-

ferential enrichment of pathways between the different sex

groups emphasizes the importance of conducting a stratified
Cell Reports Methods 4, 100742, April 22, 2024 11
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analysis based on sex (Figure 6C). Notably, a distinct response

in late-stage AD microglia is observed, with signaling-related

pathways (e.g., cell chemotaxis, regulation of metal ion trans-

port, regulation of trans-synaptic signaling, and modulation

of chemical synaptic transmission) primarily being perturbed

in male individuals, whereas kinase activity-related pathways

(including positive regulation of kinase activity, positive regula-

tion of the MAPK cascade, positive regulation of protein

kinase activity, and regulation of the ERK1 and ERK2 cascade)

are mainly perturbed in female individuals (Figure 6C). We

believe that these results provided by scBC offer valuable

guidance for future investigations to unravel the underlying

mechanisms driving the sexual dimorphism observed in AD

pathology.

DISCUSSION

Molecular biomarkers have been widely used in clinical practice

to identify diseases, but they often suffer from low coverage

and high false positive or false negative rates, limiting their further

application.47 Network biomarkers, also known as module bio-

markers, have attracted attention as a more robust form of

biomarker than individual molecules for characterizing dis-

eases.48,49 This is particularly important for analyzing single-cell

data, which are inherently more complex than bulk tissue data

due to the heterogeneity of individual cells within a sample. How-

ever, network biomarkers are usually cell specific and may

change during disease progression. To detect cell-specific

network biomarkers, we developed scBC, a single-cell Bayesian

biclustering method that combines VAE for batch removal and

data imputation with matrix factorization-based Bayesian biclus-

tering for using known biological information. Ourmethod outper-

forms other state-of-the-art methods in finding FGMs, discov-

ering functionally related cell groups, and detecting cell-gene

correlation patterns in highly heterogeneous scRNA-seqdatasets

and simulated data. This makes scBC well suited for analyzing

diseases with multifactorial etiologies whose functionally related

potential cell groups are finely divided, cell-type conditioned

gene co-expression patterns are complicated, and cell-gene cor-

relation changes throughout the disease progression.

In this study, we applied scBC to an snRNA AD dataset to

explore how the transcriptional functional modules of each

cell type change as the disease progresses. Our results further

confirmed the complex interplay of virtually every major brain

cell type in AD.3,34 We found that FGM composition largely

changed in astrocytes and oligodendrocyte precursor cells

before individuals developed severe pathological features.

However, inhibitory neurons showed minimal changes in FGM

throughout disease progression, indicating that this cell type

does not have many alterations in transcriptional patterns dur-

ing AD progression. A consistent FGM perturbation across all

other cell types, except inhibitory neurons, was the alteration

in pathways related to myelination and gliogenesis, suggesting

that this pathway may play a decisive role in the progression

of AD.

Specific to each cell type, energy metabolism and ion trans-

porters are dysregulated in AD astrocytes, indicating the inflam-

matory state of the brain following injury and neurodegeneration.
12 Cell Reports Methods 4, 100742, April 22, 2024
The perturbation of FGM composition in excitatory neurons from

normal to early pathology is very subtle compared to the change

from the early stage to the late stage, indicating that the rate at

which the cells become abnormal may be slow at first and

then fast. Another continuous change in excitatory neurons in

AD progression is the general dysregulation in kinase activity,

which is closely related to neuronal DNA damage. In addition,

immune response, cellular cation homeostasis, and synapse

function are altered in AD excitatory neurons. Microglia

shares a similar alteration in kinase activity with excitatory

neurons throughout AD progression. Pathways such as immune

response-related cytokine-mediated signaling, amyloid interac-

tion-related cell migration, and lipid metabolism-related fatty

acid response are dysregulated in the early AD microglia. Cell

chemotaxis becomes abnormal in late AD microglia, indicating

an inflammatory state in AD microglia. The oligodendrocyte is

a cell that needs to be focused on more for disease treatment

since FGM perturbations in such a cell type are mainly concen-

trated in myelination-related and synaptic signaling-related

pathways, directly related to the reduction of the excitability of

the nervous system. Pathways related to ion transportation, ki-

nase activity, and cellular cation homeostasis are dysregulated

in oligodendrocyte precursor cells. Finally, sex-specific differen-

tial response in AD microglia is also reported. Specifically,

signaling-related pathways are primarily perturbed in male indi-

viduals, whereas kinase activity-related pathways are mainly

perturbed in female individuals.

Limitations of the study
In the context of high-throughput sequencing data, network

biomarker-based analytical methods preserve the complex co-

expression or co-regulation patterns in the gene module and

are more robust to the analysis of complex diseases. We believe

that scBC, as a technique for cell-specific network biomarker

detection, creates an opportunity for effectively delineating

mechanisms of complex diseases at single-cell resolution,

providing advice on the treatment of such diseases. However,

although the network biomarkermay contain complex coexpres-

sion or co-regulation patterns, its internal precise and quantita-

tive regulatory relationship has not been clarified. Future

research can focus on the explanation of the regulatory relation-

ship within the cell-specific network structure, so as to have a

more accurate inference on the principle of FGM perturbations

during disease progression. In addition, although the application

of our method to AD scRNA data analysis yielded consistent

conclusions with previous studies, it is important to note that

most of these supporting conclusions were derived from compu-

tational analysis rather than experimental validation. Further-

more, given the presentation of numerous hyperparameters in

scBC, although we have set them to reasonable defaults,

exploring alternative hyperparameter tuning approaches may

lead to improved model fit and more appropriate inference in

certain cases. Lastly, matrix factorization-based Bayesian opti-

mization procedure is also time-consuming, especially when

the dataset is extremely large. An unbiased subsampling pro-

cedure is crucial when dealing with extremely large datasets.

How to speed up calculations while ensuring algorithm accuracy

is also of interest for future research.
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METHOD DETAILS

Details for data reconstruction using variational inference
Taking advantage of recent work by Romain et al.,19 here we also adopt the idea of using variational inference to estimate the

posterior distribution for the low-dimensional, latent variables zn for each cell n which should reflect biological differences

among cells. To remove the nuisance variation due to technique factors such as batch effects, it’s reasonable to model the

sampling distribution conditioned on the batch annotations sn
54,55. That is, the observed expression xgn of each gene g in

each cell n is drawn from pðxgn
��zn;snÞ. There has been some discussion about how to model the scRNA-seq data. Zero-inflated
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negative binomial distribution (ZINB) or negative binomial (NB) distribution are deemed as the better choice.55–58 To model the

data generation from a ZINB or NB distribution, we use a hierarchical probabilistic model for data generating process:

zn � Nð0; IÞ
rn � fexpectðzn; snÞ
g
wn � Gamma
�
rgn; q

g
�

g
yn � Poisson
�
lnw

g
n

�

g
hn � Bernoulliðfdropðzn; snÞÞ

The subscript n denotes the representation of nth cell, which typically is amulti-dimensional vector. ln is a parameter strongly corre-

lated with and decide the library size of cell n. We use superscript annotation (for example, rgn) to refer to a single entry that corre-

sponds to a specific gene g. The parameter q3RG
+ denotes a gene-specific inverse dispersion, which can be estimated via variational

Bayesian inference. Here zn is the low-dimensional, latent variable for cell n.We use a standardmultivariate normal prior for z because

it can be reparametrized in a differentiable way into any arbitrary multivariate Gaussian random variable, which is extremely helpful in

the inference process. We denote B as number of batches, then fexpect is a neuron network which maps the latent space and batch

annotations of each cell back to the full dimension of the gene expression: Rd+13f0; 1gB / RG . At the generating stage, fexpect is

constrained by a softmax activation function at the last layer so that each element of rn sum up to 1 during inference. Therefore,

rn denotes themean proportion of transcripts expressed across all genes. fdropðzn; snÞ is also a neuron network whichmaps the latent

space and batch annotations of each cell to their respective dropout probabilities. wg
n and ygn are two intermediate variable and it can

be shown that through this process, hgn is an r.v. following ZINB distribution55 with mean lnr
g
n, gene-specific dispersion qg and zero-

inflation probability fdropðzn; snÞ (See proof below).

When we conduct data reconstruction to get the batch-removal, imputed gene expression data, we only take advantage of the

intermediate variable rn and scale it to our expected library size. That is, multiplying it by a given parameter, which we just use

the empirical library size (total number of transcripts per cell) of each cell throughout our experiments. But one should notice we

can re-scale it to any expected library size if additional information is given.

Marginal distribution of generation distribution

Through the generation procedure, we can model the scRNA-seq data either as ZINB or NB distribution. The proof is as following:

First, take r to be the gene-specific shape parameter of a Gamma variablew and p
1�p to be its scale parameter, use a scalar l˛ R+,

then the count variable yjw � Poisson (lw) has a negative binomial marginal distribution with mean rl p
1�p:

pðyÞ = R
pðyjwÞpðwÞdw

=

Z
e� lwlywy

Gðy+1Þ
wr� 1e

�w

�
1

p
� 1

	
ð1 � pÞr

prGðrÞ dw

=
Gðy+rÞ

Gðy+1ÞGðrÞ
�

1 � p

1 � p+lp

	r�
pl

1 � p+lp

	y

Second, multiplication by zero to ygn can be formally encoded as a mixture between a point-mass at zero and the original distribu-

tion of ygn . Consequently, the conditional pðxgn
��zn; snÞ is a zero-inflated negative binomial with probability mass function (for simplicity,

we ignore the subscript n):

pðxg = 0jz; l; sÞ = fdropðz; sÞg +
�
1� fdropðz; sÞg

�� qg

qg+l

	fexpect ðz;sÞ

pðxg = yjz; l; sÞ = �
1� fdropðz; sÞg

� Gðy+fexpectðz; sÞ Þ
Gðy+1ÞGðfexpectðz; sÞ Þ

�
qg

qg+l

	fexpectðz;sÞ� l

qg+l

	y

; y˛N�
Model training at learning stage
In our VAE architecture, we denote variational parameters as 4 and generative parameters as q. Here we introduce a recog-

nition model q4ðznjxn; snÞ: an approximation to the intractable true posterior pqðznjxn; snÞ. The marginal likelihood can be

written as:

log pqðxnjsnÞ = DKLðq4ðznjxn; snÞkpqðznjxn; snÞÞ+ Lðq;4; xnÞ
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Where Lðq; 4; xnÞ = Eq4ðzn jxn ;snÞ ½ � log q4ðznjxn; snÞ + log pqðzn; xnjsnÞ�. Since the KL-divergence is always non-negative. We

have:

log pqðxnjsnÞREq4ðzn jxn ;snÞ ½ � log q4ðznjxn; snÞ + log pqðzn; xnjsnÞ�
The evidence lower bound (ELBO) Lðq;4; xnÞ can also be written as:

Lðq;4; xnÞ = Eq4ðzn jxn ;snÞ ½log pqðxnjzn; snÞ� � DKLðq4ðznjxn; snÞkpqðznjsnÞÞ
Optimizing the ELBO means optimizing both the variational parameters 4 and generative parameters q at the same time.

Assuming the true latent variable zn is batch-free (independent with batch annotation sn) and the prior follows standard multi-

variate Gaussian distribution, we can get the closed-form expression of the derivative of DKLðq4ðznjxn;snÞkpqðznjsnÞÞ. To get the

low-variance Monte Carlo estimation of the gradient of term Eq4ðzn jxn ;snÞ ½log pqðxnjzn; snÞ�, we use the reparameterization trick in

the learning stage59:

~Eq4ðzn jxn ;snÞ ½log pqðxnjzn; snÞ�y
1

L

XL

l = 1

log pq

�
xn
��g4

�
el; xn

�
; sn

�
Where g4ðel; xnÞ is a differentiable transformation to reparameterize the random variable zn � q4ðznjxn; snÞ and e � pðeÞ is an auxiliary

noise variable.

For a single data point xn (cell n) we have:

~Lðq;4; xnÞ =
1

L

XL

l = 1

log pq

�
xn
��zðlÞ; sn� � DKLðq4ðznjxn; snÞkpqðznÞÞ

Where zðlÞ = g4ðeðlÞ; xnÞ and eðlÞ � pðeÞ.
At learning stage, we use mini-batch stochastic optimization to optimize the ELBO, suppose our dataset contains N cells and the

size of each mini-batch is M, we can get the estimator of marginal likelihood lower bound of the stochastic mini-batch:

Lðq;4; xnÞy LMðq;4; xnÞ =
1

M

XM
i = 1

~Lðq;4; xnÞ

When M is large enough, Diederik et al.59 found that the number of samples L per datapoint can even be set to 1, hence

decrease the time consumption when conduct expectation estimation for Eq4ðzn jxn ;snÞ ½log pqðxnjzn; snÞ�. Throughout our experi-
ment we set M = 128 data points to guarantee the large-sample requirement. We use Adam optimizer with learning rate =

0.01. We also use deterministic warm-up and batch normalization during learning to learn an expressive model which is recom-

mended by Sonderby et al.60

Bayesian biclustering incorporate biological information
After reconstructing the original expression matrix, we can conduct biclustering procedure to detect condition-specific FGMs and

identify cell subpopulations with distinct functions. Relevant studies have shown that if we can introduce existing biological informa-

tion (such as the metabolic pathways from the KEGG database) into the process of biclustering, then the accuracy of the biclustering

results will be improved.20,53,61–64 Therefore, we adopt a Bayesian analysis framework, which can introduce prior information to guide

variable selection.

Suppose our reconstructed data matrix is X of size p3 n, where p represents the number of genes and n is the number of cells. In

order to reduce randomness, here we do not directly decompose the data matrix X, but decompose its parameter matrix. We denote

the parameter matrix ofX as m (e.g., mean) and decompose it: m = m1T +WZ, wherem is a p31 bias vector, 1 is a n3 1 vector of 1,W

is a p3Lmatrix containing the bicluster information at gene level, indexes of non-zero rows of column l denotes the involved genes in

bicluster l. Z is a L3n matrix containing the bicluster information at cell level, indexes of non-zero columns of row l denotes the

involved cells in bicluster l. Since the observation of gene j from cell i xji is generated independently, the likelihood function of X is

the product of the likelihood functions of each independent observation. Here we set xj to be a random variable that follows Gaussian

distribution with a likelihood function pj in the discussion following on.

The likelihood function of an individual observation is:

pj

�
xji
��mji; rj

�
=

rj
1=2ffiffiffiffiffiffi
2p

p e� rjðxji �mjiÞ2


2; xji = 0;1:.: (Equation 1)

Now we discuss how to introduce prior information. To obtain a sparse estimate of W, we first use the Laplace prior on the

matrix W:

log pðWjlÞ = C+
X
j;l

log ljl �
X
j;l

ljl
��wjl

��
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Here the prior parameter l controls the degree of shrinkage of w. Unlike standard Laplacian prior that uses the same shrinkage

parameter l for all wjl’s, we use different shrinkage parameter for individual wjl to achieve adaptive shrinkage. To incorporate biolog-

ical information represented by a given graph G = <P;E >, we consider the intuitive scenario where there is an edge between p1 and

p2, aswell as another edge between p2 and p3. In this case, if p1 is selected, we encourage the selection of p2, and if p2 is selected, we

encourage the selection of p3. However, if p1 is selected but p2 is not, we do not encourage the selection of p3. To achieve these, we

propose encouraging one variable to load on a factor if the other connected variable exhibits a non-zero loading on the same factor.

Applying this concept to notations, if xj and xk are directly connected in G andwjl is non-zero for some l, we encouragewkl to also have

non-zero values. For this purpose, we introduce a graph-Laplacian prior for l given the precision matrix U as:

log pðajUÞ = Cv2 +
L

2
logjUj � 1

2v2

X
l

ðal � v11ÞUðal � v11Þ (Equation 2)

Where ajl = logljl， al = ða1l; :::;aplÞT, v1 and v2 are hyperparameters. The precision matrix U connecting the correlated l is

defined as:

U =

2666664

1+
X
js1

u1j �u12 / �u1p

�u21 1+
X
js2

u2j 1 �u2p

« « 1 «

�up1 �up2 / 1+
X
jsp

upj

37777775
U is a symmetric matrix, i.e., wjl = wlj. and the prior of U is assigned on set u = fujk : j < kg:

pðuÞfjUj� L
2

Y
ðj;kÞ˛E

uau � 1
jk expð�buujkÞ1ðujk > 0Þ

Y
ðj;kÞ;E

d0ðujkÞ (Equation 3)

d0ð $Þ is the Dirac function centered at 0, 1ð $Þ is an indicative function. au and bu are two hyper-parameters needed to be specified a

priori. Suppose genes function in similar pathways are connected in a prior graph G, say, if xj and xk are directly connected in G, then

(3) will try to make the precisionmatrix componentsujk to be non-zero, andmake the contraction term ljl and lkl related through (2).

In the resulting matrixW containing the bicluster information at gene level, sincewjl andwkl are subject to a similar degree of contrac-

tion under this condition, they tend to be both zero or non-zero at the same time. In other words, if genes j and k are directly connected

in similar pathways, they are encouraged to be selected together (or not selected together) in bicluster. Therefore, a standout feature

of this approach is that the selected feature set in each bicluster tends to include functional genemodule rather than individual genes,

resulting in more biologically meaningful results.

Since the Zmatrix represents the results on the cell set, there is no special pathway information between the samples, so it is suf-

ficient to perform Laplace sparse prior on it:

log pðZjxÞ = C+
X
l;j

log xli �
X
l;j

xlijzlij

Where x is the contraction factor, on which a conjugate prior is applied, i.e., Gamma prior:

log pðxÞ = Cv3 ;v4 + ðv3 � 1Þ
X
l;i

log xil � 1

v4

X
l;i

xli (Equation 4)

v3 and v4 are another two hyper-parameters needed to be specified a priori.

Prior specification

In this Bayesian setting, several parameters need to be specified a priori, including n1 and n2 fromEquation 2, au and bu fromEquation

3, and n3 and n4 from Equation 4. Based on our experience with numerical experiments, we have set au as 4 and bu as 1. This choice

ensures that the prior correlation for u is large while maintaining a relatively uninformative prior. Furthermore, we have fixed n2 as ln 2

and n3 as 1 to establish a unit coefficient of variation for the corresponding priors of a and x The parameters n1 and n4 play a crucial role

in controlling the sparseness of the solutions forW and Z, determining the size of each bicluster. After conducting parameter tuning

pre-tests, we recommend setting n1 = 20 and n4 = 7, which we consistently applied throughout our experiments. We have also desig-

nated these values as modifiable default parameters within the model.

MAP estimation for biclustering result
In the optimization stage, we adopt the Pólya-Gamma latent variable proposed by Polson et al.65 We use the identity formula pro-

vided in Polson et al.65:

emji xji

ð1+emji xji Þbji = 2�bji ekjimji

Z N

o

e� rjim
2
ji



2
pjiðrjiÞdrji
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Where kji = xji � bji=2， pjiðrjiÞ is of the Pólya-Gamma class PGðbji;0Þ. So Equation 1 can be written as:

pj

�
xj

��mj

�
fe

� 1
2

P
i

rjiðmji � xjiÞ2
p�
j ðrjÞ

Where rj � G
�zj+n

2 ;
zj
2

�
, zj is the prior parameter for variance. After the introduction of latent variable r, LASSO can be efficiently solved in

the M step of the EM algorithm. Here we use dynamic weighted LASSO algorithm to speed up the calculation.66 Additionally, we uti-

lize maximum a posteriori estimation (MAP) to estimate the parameters, which is defined as:

ðcW; bZ;cm; ba;bxÞ = argmaxW;Z;m;a;x

Z Z
pðW;Z;m;a; x;r;UjXÞdrdU

This can be efficiently solved using the EM algorithm, and the objective function at t iterations is:

QtðZ;W;m;a; xÞ = � 1

2

X
i;j

r
ðtÞ
j

�
mji � xji

�2
+
X
j;l

ajl �
X
j;l
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��wjl

��+ v3
X
l;i

log xl;i �
X
l;i

xl:i

�
jzlij + 1

4

	
� 1

2v2

X
l

ðal � v11ÞTUðtÞðal � v11Þ

Where m = mðt� 1Þ +Wðt� 1ÞZðt� 1Þ, rðtÞij = Eðrij
���X;Wðt� 1Þ;Zðt� 1Þ;mðt� 1Þ;aðt� 1Þ; xðt� 1ÞÞ andUðtÞ = Eðuij

���X;Wðt� 1Þ;Zðt� 1Þ;mðt� 1Þ;aðt� 1Þ;
xðt� 1ÞÞ.

Strong classification of cell group for different biclustering methods
For scBC and GBC, we can directly observe the contribution of each bicluster to the parameter matrix in each cell from the result of

the Z matrix. We assign a cell to the most involved cluster, which is determined by the row with the largest absolute value. For the

remaining methods, we aim to achieve optimal cell classification results without losing any information from the biclustering results.

Due to the high degree of cell overlap in the biclustering results, we convert the cell-level biclustering results into a graph, where cells

in the same bicluster are connected by edges. If the occurrences of a pair of cells increase, the weights of the edges between them

also increase accordingly. We then apply the Markov clustering algorithm (MCL)26 to convert the graph into cell-level clustering re-

sults. For each method, we set the number of iterations to a value between 1 and 10 that allows the method to achieve the highest

adjusted Rand index (ARI). In fact, we observed that the number of iterations required for the best results usually does not exceed 7.

After the transformation, each cell is exclusively assigned to a cluster, and we can evaluate the cell-level clustering results using any

clustering evaluation criterion.

Datasets and preprocessing
Here we describe all of the datasets and the preprocessing steps used in the current work as follows. The prior information for all the

real-world datasets is extracted by biomaRt using the highly variable genes.

HEART

This is a combined single cell and single nuclei RNA-Seq data of 485K cardiac cells with annotation fromHeart Cell Atlas. Herewe use

a subsampled version provided at https://github.com/YosefLab/scVI-data/blob/master/hca_subsampled_20k.h5ad, which has

been filtered down randomly to 20k cells. In our study, we further filtered 1000 highly variable genes using scanpy and generate

10 subsampled datasets with each containing 1000 randomly selected cells.

PBMC

This actually is a purified PBMCdataset from.50 An organized version can be accessed from https://github.com/YosefLab/scVI-data/

raw/master/PurifiedPBMCDataset.h5ad. We also conducted a subsampling procedure here: first screen out 853 highly variable

genes using scanpy, then generate 10 subsampled datasets with each containing 1000 random selected cells.

LUAD

Single cell RNA sequencing of lung adenocarcinoma from,51 which can be accessed from the NCBI Expression Omnibus database

(accession code GSE131907). This is single cell RNA sequencing (scRNA-seq) for 208,506 cells derived from 58 lung adenocarci-

nomas from 44 patients, which covers primary tumor, lymph node and brain metastases, and pleural effusion in addition to normal

lung tissues and lymph nodes. Here we use Seurat to conduct preprocessing: we first randomly selecet 10000 cells to filter 2000

highly variable genes, then generate 10 subsampled datasets with each containing 5000 cells.

BC

Single cell RNA sequencing of primary breast cancer from,52 which can be accessed from the NCBI Expression Omnibus database

(accession code GSE75688). This dataset contains 515 cells from 11 patients and most of the cell type is tumor. We first screen out

2000 highly variable genes using Seurat then conduct subsampling. Due to the serious category imbalance problem in this dataset

(326 cells are labeled as ‘‘Tumor’’), we only sample 86 cells with the tumor label each time and all cells with other labels are retained so

that the results will not be unreliable due to class imbalance during evaluation.

AD

A total of 80660 droplet-based single-nucleus RNA-seq (snRNA-seq) profiles for Alzheimer’s disease from.3 The postmortem human

brain samples came from 48 participants in the Religious Order Study (ROS) or the Rush Memory and Aging Project (MAP), collec-

tively known as ROSMAP with 24 individuals with high levels of b-amyloid and other pathological hallmarks of AD (‘AD-pathology’),
e5 Cell Reports Methods 4, 100742, April 22, 2024
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and 24 individuals with no or very low b-amyloid burden or other pathologies (‘no-pathology’). The original study clustered individuals

based on nine clinico-pathological traits to further define the pathology groups as ‘early-pathology’ and ‘late-pathology’. And that

division is totally adopted in our study. The snRNA-seq data are available on The Rush Alzheimer’s Disease Center (RADC) Research

Resource SharingHub at https://www.radc.rush.edu/docs/omics.html (snRNA-seq PFC) or at Synapse (https://www.synapse.org/#!

Synapse:syn18485175) under the https://doi.org/10.7303/syn18485175. The data are available under controlled use conditions set

by human privacy regulations. To access the data, a data use agreement is needed. Since we are not going to use this dataset to

conduct benchmarking here, there is no need to repeatedly generate subsamples. When preprocessing the dataset, we first use

stratified sampling to draw one out of ten cells, then 2000 highly variable genes are refined by Seurat. This sample is then used to

be explored later.

Simulated data

In each simulation setting, we generate 100 simulated datasets. For convenience, we denote p as the number of genes, n as the num-

ber of cells. The scale of the FGM increases adaptively with the size of the simulated dataset (actually the size of p). The parameter m is

computed by the multiplicative model m =WZ, where W is a p3L matrix and Z is an L3n matrix. The number of non-zero elements in

each column ofW is set as p/20, and the number of non-zero elements in each row of Z is randomly drawn from a Poisson distribution

with a parameter of 30. The row indices of non-zero elements in W and the column indices of Z with non-zero elements are randomly

drawn from 1 to p and 1 to n. The nonzero element values for bothWand Z are generated froma normal distributionwithmean 1.5 and

standard deviation 0.1, and are randomly assigned to be positive or negative. The prior edge is generated along with W.

When generating X, each element is generated from NB
�
rj;

1
1+e�mji

�
, and the parameter rj is randomly drawn from 5 to 20. Finally, in

order to simulate different batches, we divided the dataset into three parts, each of n/3 samples, with different intensities of noise. The

implementation of dropout is to perform Bernoulli censoring at each data point according to the given dropout rate parameter.

The simulation data generation process is shown in Figure 3A.

Matching of biclusters when analyzing AD dataset
To avoid confusion, we first explain the difference between biclustering and bicluster, two concepts we’ve been using throughout the

paper. A biclustering refers to execute one biclustering algorithm once (e.g., scBC). After biclustering is conducted, we can get

several columns-rows pairs, each is called a bicluster. In our study, we conduct three independent biclusterings on the three path-

ologically seperated AD datasets, each with L biclusters. L is the number of biclusters we set beforehand.

When conducting scBC on the AD dataset, genes that are widely present in all biclusters represent the commonality among all

cells. We subtract these genes from each bicluster to reduce the homogeneity of different biclusters, since we are not interested

in them in this case. Here, we set the number of biclusters in each round of biclustering to 6. However, this is an empirical hyperpara-

meter, and some biclusters may have a high degree of similarity and bemore reasonable to merge into a single bicluster. This applies

not only to different biclusters in a whole biclustering but also to different biclusters in independent biclusterings. However, the

methods for aligning biclusters in a single biclustering and for biclusters in different biclusterings should be different, since biclusters

from the latter are somewhat more independent.

Due to their own homogeneity or correlation, more attention should be paid to the exclusivity whenmerging biclusters from a single

biclustering. We denote the number of genes only appear in biclusters i and j as e, which means all the other biclusters don’t have

these genes. And genes present in bicluster k is denoted as gk, the overlap score is defined as:

osi;j =
e

max
�jgij;

��gj

���
In our study, a pair of biclusters with overlap score >0.03 are combined as an FGM. The biclusters correspondences in different bi-

clusterings are independent, so more attention should be paid to the degree of overlap. Here we use the ‘‘overlap over union’’(IoU)

criterion to combine different biclusters:

IoUi;j =
intersect

�
gi; gj

�
union

�
gi; gj

�
each pair of biclusters with IoU >0.3 are combined as an FGM. The alignment results are in Table S14.

FGM perturbation during AD progression and enrichment analysis
Before merging functional gene modules (FGMs) from different biclusters, we first assign each cell exclusively to a bicluster using the

strong classificationmethod as before.When similar FGMs are combined, functionally related cells are alsomerged as awhole. Next,

we obtain the FGM composition contained in each cell type. As observed, multiple FGMs can be simultaneously active in one cell

type. To illustrate FGM perturbation for each cell type during AD progression, we first observe the changes in the proportion of

each FGM in each cell type. FGMs with an elevated ratio are candidates for "increased activity," while those with a reduced ratio

are candidates for "decreased activity." We then examine the differences in the gene set makeup of these two types of FGMs.

The overlap between the two represents commonalities exhibited in certain cell types, which are not of interest to us. We focus

on the exclusive genes of "increased activity" and "decreased activity," which may uncover pathway perturbations in different
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pathological states. The exclusive genes in "increased activity" and "decreased activity" are used for functional enrichment using

clusterProfiler. The results are used to reveal the pathway perturbation during AD progression.

Analyzing AD dataset using GBC
To ensure a fair comparison, we employed the identical analysis pipeline for the AD dataset as used by scBC for GBC. The only

distinction lies in the threshold for the overlap score when matching different biclusters within a single biclustering. In this case, a

threshold of 0.2 was set to avoid merging all biclusters into a single FGM, as it would yield inconclusive results. The matching results

of GBC are in Table S15.

QUANTIFICATION AND STATISTICAL ANALYSIS

Here we will describe the evaluation metrics used in our study.

Comparison of FGM detection
To quantify the performance of each method in detecting functional gene modules (FGMs), we conduct gene ontology (GO) enrich-

ment using clusterProfiler for each gene set of each bicluster and record themost significant p value (BH adjusted). Since the number

of biclusters detected by each method differs, we take the most significant p value of all the biclusters detected by a single method

and transform it using -log10(p) to denote the performance of this method. Methods that fail to detect any bicluster are labeled as 0.

We use 10 subsamples from each dataset for repeated evaluation.

Criterions for clustering performance
There are three metrices we used to benchmark the clustering performance at cell level: ARI, FMI and AMI. Here we will briefly

describe how to compute these metrices:

ARI. TheRand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs

that are assigned in the same or different clusters in the predicted and true clusterings. The rawRI score is then ‘‘adjusted for chance’’

into the ARI score using the following scheme:

ARI =
RI � EðRIÞ

maxðRIÞ � EðRIÞ
To calculate this value, first calculate the contingency table like that:
Y1 Y2 . Ys Sums

X1 n11 n12 / n1s a1

X2 n21 n22 / n2s a2

« « « 1 « «

Xr nr1 nr1 / nrs ar

Sums b1 b2 / bs
each value in the table represents the number of data point located in both cluster (Y) and true class (X), and then calculate the ARI

value through this table:
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The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters

and samples and exactly 1.0 when the clusterings are identical (up to a permutation). The adjusted Rand index is bounded below

by �0.5 for especially discordant clusterings.

FMI. The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:

FMI =
TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞðTP+FNÞp
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Where TP is the number of True Positive (i.e., the number of pair of points that belongs in the same clusters in both true labels and

predicted labels), FP is the number of False Positive (i.e., the number of pair of points that belongs in the same clusters in true labels

but not in predicted labels) and FN is the number of False Negative (i.e., the number of pair of points that belongs in the same clusters

in predicted labels but not in true labels). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

AMI. The Mutual Information is a measure of the similarity between two labels of the same data. Where jUij is the number of the

samples in cluster Ui and
��Vj

�� is the number of the samples in cluster Vj, the Mutual Information between clusterings U and V is

given as:

MIðU;VÞ =
XjUj
i = 1

XjVj
j = 1

��UiXVj

��
N

log
N
��UiXVj

��
jUij

��Vj

��
Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the

fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more

information shared. For two clusterings U and V, the AMI is given as:

AMIðU;VÞ =
MIðU;VÞ � EðMIðU;VÞÞ

avgðHðUÞ;HðVÞÞ � EðMIðU;VÞÞ
Where Hð�Þ is the information entropy for a label’s distribution (e.g., HðUÞ =

PjUj
i = 1PðiÞlogðPðiÞÞ). This metric is independent of the

absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

Metrices for biclustering comparison
Suppose M: {1. L}/ {1. L} maps the ground true bicluster index to the index of the bicluster detected by an algorithm, Ti denote

the ith ground true bicluster and Bi denote the ith detected bicluster. The Cluster Error (CE) proposed by Anne et al.67 is defined as:

1 � CEðMÞ =

PL
i = 1

�� TiXBMðiÞ
������SL

i = 1 TiWBMðiÞ

����
This is a distancemeasure of subspace clustering with lower CE indicating better consistency with ground truth.Whenwe evaluate

the performance, we choose anMminimizing the CE as the optimal match and is used by other measurements. The corresponding

1-CE is output with the higher the value, the better.

We also use F-score (F) to evaluate the performance. F-score is the harmonic mean of precision (PRE) and recall (REC). Here we

use the calculation way proposed by Zhong et al.18:

PREi =

��TiXBMðiÞ
����BMðiÞ

��
RECi =

��TiXBMðiÞ
��

jTij
Where A denote all the elements of the expression data. PREi and RECi are computed for bicluster pair i, we finally output the average

for each criterion as PRE and REC, along with their harmonic mean as F-score(F), which is a combination of the two, and we also pay

more attention to it. The higher this indicator is, the better.
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 Supplementary Information 

 

Supplementary Figures 

 

Figure S1. overlap of biclusters, related to Figure 1. This schematic diagram illustrate how 

biclustering with overlap can uncover the complex patterns in single-cell data. In the complex cell 

machinery, multiple FGMs are active in a cell group, which is represented by the Figureure that 

FGM1 and FGM2 are simultaneously active in cell type 3. Meanwhile, different cell groups may 

share a common FGM. This can be seen from the fact that cell type 1 and cell type 2 share a 

common FGM3, since FHM3 is contained in both FGM1 and FGM2. 

  



 
 

Figure S2. ablation study on four real-world datasets, related to Figure 2. a, Enrichment 

score of different combinations of building blocks of scBC in PBMC dataset. The x-axis 

represents different combination strategies: only matrix factorization based biclustering 

(base); biclustering with prior information (+prior); data reconstruction and biclustering 

(+reconstruction) and full model (scBC). y-axis represents the enrichment score (-log10(p), 

BH adjusted). Error bar stands for standard deviation of 10 subsample’s results. The notation 

of the axis is the same for b, c, and d. b, Enrichment score of different combinations of building 

blocks of scBC in HEART dataset. c, Enrichment score of different combinations of building 

blocks of scBC in LUAD dataset. d, Enrichment score of different combinations of building 

blocks of scBC in BC dataset.  



 
 

Figure S3. visualization of cell clustering results on PBMC dataset, related to Figure 2f. These 

are the cell representation of the subsample from the last iteration of PBMC dataset. Some 

methods output too many categories so that we merge some into "others" whose number of 

cells is less than one percent of the total sample. Methods not shown here fail to detect 

functional cell groups. 

 

  



 

 

Figure S4. visualization of cell clustering results on HEART dataset, related to Figure 2g. 

These are the cell representation of the subsample from the last iteration of HEART dataset. 

Some methods output too many categories so that we merge some into "others" whose 

number of cells is less than one percent of the total sample. Methods not shown here fail to 

detect functional cell groups. 

 

  



 

 

Figure S5. visualization of cell clustering results on LUAD dataset, related to Figure 2h. These 

are the cell representation of the subsample from the last iteration of LUAD dataset. Some 

methods output too many categories so that we merge some into "others" whose number of 

cells is less than one percent of the total sample. Methods not shown here fail to detect 

functional cell groups. 

 

  



 
 

Figure S6. visualization of cell clustering results on BC dataset, related to Figure 2i. These 

are the cell representation of the subsample from the last iteration of BC dataset. Some 

methods output too many categories so that we merge some into "others" whose number of 

cells is less than one percent of the total sample. Methods not shown here fail to detect 

functional cell groups. 

 

  



 

 

Figure S7. GBC’s results of astrocytes on AD dataset, related to STAR Methods. a, 

perturbation of FGM composition in astrocytes during AD progression. Each pie chart 

quantifies the FGM composition of a cell under a specific progression condition. The outer 

red circles indicate FGMs whose composition is increasing compared to the previous stage; 

The inner black circle represents FGMs whose composition is decreasing compared to the 

latter stage. b, results of enrichment analysis of FGMs altered from early pathology to late 

pathology. ‘increase’ represents the specific FGM of the late pathology, and ‘decrease’ 

represents the specific FGM of the early pathology, both representing the set of genes that 

are perturbated during the progression. 

  



 

 

Figure S8. GBC’s results of excitatory neurons on AD dataset, related to STAR Methods. a, 

perturbation of FGM composition in excitatory neurons during AD progression. Each pie chart 

quantifies the FGM composition of a cell under a specific progression condition. The outer 

red circles indicate FGMs whose composition is increasing compared to the previous stage; 

The inner black circle represents FGMs whose composition is decreasing compared to the 

latter stage. b, results of enrichment analysis of FGMs altered from early pathology to late 

pathology. ‘increase’ represents the specific FGM of the late pathology, and ‘decrease’ 

represents the specific FGM of the early pathology, both representing the set of genes that 

are perturbated during the progression. 

 

  



 

 

Figure S9. GBC’s results of Inhibitory neurons on AD dataset, related to STAR Methods. a, 

perturbation of FGM composition in Inhibitory neurons during AD progression. Each pie chart 

quantifies the FGM composition of a cell under a specific progression condition. The outer 

red circles indicate FGMs whose composition is increasing compared to the previous stage; 

The inner black circle represents FGMs whose composition is decreasing compared to the 

latter stage. b, results of enrichment analysis of FGMs altered from early pathology to late 

pathology. ‘increase’ represents the specific FGM of the late pathology, and ‘decrease’ 

represents the specific FGM of the early pathology, both representing the set of genes that 

are perturbated during the progression. 

 

  



 

 

Figure S10. GBC’s results of microglia on AD dataset, related to STAR Methods. a, 

perturbation of FGM composition in microglia during AD progression. Each pie chart 

quantifies the FGM composition of a cell under a specific progression condition. The outer 

red circles indicate FGMs whose composition is increasing compared to the previous stage; 

The inner black circle represents FGMs whose composition is decreasing compared to the 

latter stage. b, results of enrichment analysis of FGMs altered from early pathology to late 

pathology. ‘increase’ represents the specific FGM of the late pathology, and ‘decrease’ 

represents the specific FGM of the early pathology, both representing the set of genes that 

are perturbated during the progression. 

 

  



 

 

Figure S11. GBC’s results of oligodendrocytes on AD dataset, related to STAR Methods. a, 

perturbation of FGM composition in oligodendrocytes during AD progression. Each pie chart 

quantifies the FGM composition of a cell under a specific progression condition. The outer 

red circles indicate FGMs whose composition is increasing compared to the previous stage; 

The inner black circle represents FGMs whose composition is decreasing compared to the 

latter stage. b, results of enrichment analysis of FGMs altered from early pathology to late 

pathology. ‘increase’ represents the specific FGM of the late pathology, and ‘decrease’ 

represents the specific FGM of the early pathology, both representing the set of genes that 

are perturbated during the progression. 

 

  



 

Figure S12. GBC’s results of oligodendrocyte precursor cells on AD dataset, related to STAR 

Methods. a, perturbation of FGM composition in oligodendrocyte precursor cells during AD 

progression. Each pie chart quantifies the FGM composition of a cell under a specific 

progression condition. The outer red circles indicate FGMs whose composition is increasing 

compared to the previous stage; The inner black circle represents FGMs whose composition 

is decreasing compared to the latter stage. c, results of enrichment analysis of FGMs altered 

from no pathology to early pathology. ‘increase’ represents the specific FGM of early 

pathology group, and ‘decrease’ represents the specific FGM of no pathology group, both 

representing the set of genes that are perturbated during the progression. The notation is 



the same in c. c, results of enrichment analysis of FGMs altered from early pathology to late 

pathology.  

 

 

 

 
Figure S13. AD data’s analyzing results stratified by sex, related to Figure 6. a, FGM 

composition in each cell type during AD progression in no-pathology group, stratified by sex. 

b, FGM composition in each cell type during AD progression in early-pathology group, 

stratified by sex. 

  



Supplementary Tables 
 
Table S1. Summarization of different datasets used in our study, related to STAR 

Methods 

Datasets sc/snRNA-seq Sequencing protocol Source 

HEART 
combined single cell and 

single nuclei RNA-Seq data 
droplet-based 

https://github.com/YosefLab/scVI-

data/blob/master/hca_subsampled_20k.h5ad 

PBMC scRNA-seq droplet-based 
https://github.com/YosefLab/scVI-

data/raw/master/PurifiedPBMCDataset.h5ad 

LUAD scRNA-seq droplet-based 
https://www.ncbi.nlm.nih.gov/geo/query/acc

.cgi?acc=GSE131907 

BC scRNA-seq plate-based 
https://www.ncbi.nlm.nih.gov/geo/query/acc

.cgi?acc=GSE75688 

AD snRNA-seq droplet-based 
https://www.synapse.org/#!Synapse: 

syn18485175 

 
 
Table S2 shows the enrichment scores obtained by comparing different methods 
through repeated experiments (10 repetitions) on different datasets, 
corresponding to the performance of different methods in discovering functional 
gene modules (as shown in Figure. 2b of the main text). 
 
Table S2. Enrichment score comparison of different methods, related to Figure 2 

 

datasets 

methods 

PBMC HEART LUAD BC 

mean sd mean sd mean sd mean sd 

GBC 23.75 3.49 24.54 4.70 42.20 3.63 34.31 2.97 

plaid 9.19 2.63 0.48 1.53 0.74 1.57 0.00 0.00 

Xmotif 22.59 1.70 0.00 0.00 0.00 0.00 0.00 0.00 

CC 26.86 0.00 23.70 1.55 43.65 1.02 7.46 2.84 

Bimax 5.43 3.266 0.00 0.00 0.00 0.00 0.00 0.00 

FABIA 21.83 2.72 11.70 2.44 22.37 2.05 0.00 0.00 

autoCell 26.50 4.16 29.41 4.03 27.81 2.13 25.24 11.56 

QUBIC2 4.02 0.96 4.29 0.83 9.19 3.56 23.09 1.36 

scBC 29.10 2.42 29.68 2.70 48.28 7.92 40.21 0.96 

 

Tables S3 to S5 show the results of ARI, FMI, and AMI obtained by repeating 



experiments (10 repetitions) of different methods on different datasets, 
corresponding to the performance of different methods in cell clustering (as 
shown in Figure. 2c-d of the main text). 

 

Table S3. ARI of different methods in different datasets, related to Figure 2 

 

datasets 

methods 

PBMC HEART LUAD BC 

mean sd mean sd mean sd mean sd 

GBC 0.16  0.03  0.23  0.05  0.26  0.05  0.03  0.01  

plaid 0.16  0.04  0.01  0.02  0.01  0.04  0.00  0.00  

Xmotif 0.04  0.02  0.00  0.00  0.00  0.00  0.00  0.00  

CC 0.00  0.00  0.06  0.03  0.18  0.06  0.13  0.02  

Bimax 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

FABIA 0.04  0.01  0.01  0.01  0.05  0.01  0.00  0.00  

autoCell 0.26 0.04 0.30 0.14 0.35 0.04 0.11 0.09 

QUBIC2 0.00 0.00 0.00 0.00 0.06 0.03 0.15 0.11 

DivBiclust -0.00 0.00 -0.00 0.00     

scBC 0.30  0.03  0.36  0.07  0.46  0.09  0.19  0.09  

 

Table S4. FMI of different methods in different datasets, related to Figure 2 

 

datasets 

methods 

PBMC HEART LUAD BC 

mean sd mean sd mean sd mean sd 

GBC 0.33  0.04  0.37  0.04  0.48  0.05  0.33  0.02  

plaid 0.28  0.03  0.04  0.11  0.07  0.17  0.00  0.00  

Xmotif 0.25  0.04  0.00  0.00  0.00  0.00  0.00  0.00  

CC 0.00  0.00  0.30  0.07  0.46  0.06  0.32  0.02  

Bimax 0.01  0.01  0.00  0.00  0.00  0.00  0.00  0.00  

FABIA 0.18  0.04  0.23  0.04  0.27  0.02  0.00  0.00  

autoCell 0.38 0.03 0.41 0.16 0.51 0.02 0.29 0.16 

QUBIC2 0.04 0.01 0.07 0.03 0.18 0.05 0.45 0.07 

DivBiclust 0.11 0.01 0.11 0.01     

scBC 0.41 0.03 0.47 0.05 0.61 0.07 0.40  0.07  

 



 

Table S5. AMI of different methods in different datasets, related to Figure 2 

 

datasets 

methods 

PBMC HEART LUAD BC 

mean sd mean sd mean sd mean sd 

GBC 0.31  0.06  0.31  0.04  0.26  0.03  0.10  0.02  

plaid 0.18  0.04  0.01  0.02  0.04  0.13  0.00 0.00  

Xmotif 0.05  0.02  0.00  0.00  0.00  0.00  0.00 0.00  

CC 0.00  0.00  0.06  0.03  0.12  0.05  0.08  0.01  

Bimax 0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.00  

FABIA 0.06  0.02  0.02  0.01  0.07  0.01  0.00 0.00  

autoCell 0.44 0.04 0.42 0.16 0.47 0.04 0.18 0.11 

QUBIC2 0.00 0.00 -0.00 0.01 0.06 0.03 0.21 0.11 

DivBiclust -0.00 0.01 -0.00 0.01     

scBC 0.47  0.03  0.47  0.05  0.53  0.08  0.25  0.07  

 
 
Tables S6 to S11 show the results of 1-CE and F scores obtained by repeating 
experiments (100 repetitions for each setting) of different methods on simulated 
datasets under different settings. The values in parentheses represent standard 
deviations. They are corresponding to the comparison of the overall performance 
of biclustering (as shown in Figure. 3b-g of the main text) Bold items represent 
the best performance. 

 

Table S6. 1-CE of different methods in different datasets (p=1000, n=300, L=3，

×10-3) , related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 6.21(1.07) 6.05(0.83) 5.31(1.47) 6.51(1.09) 5.71(0.80) 5.86(0.77) 6.00(1.01) 6.61(1.11) 

plaid 12.96(2.07) 5.99(8.79) 1.64(4.61) 1.22(3.09) 0.68(2.11) 1.12(3.17) 0.92(2.49) 1.32(3.51) 

Xmotif 0.01(0.05) 0.71(0.57) 1.03(0.95) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

CC 0.00(0.03) 0.01(0.05) 0.04(0.11) 0.14(0.18) 0.23(0.24) 0.30(0.32) 0.48(0.40) 0.57(0.45) 

Bimax 2.02(1.10) 1.91(0.94) 1.70(0.68) 1.62(0.82) 1.63(0.88) 1.62(0.67) 1.40(0.88) 1.43(0.85) 

FABIA 11.83(1.76) 11.57(1.64) 9.18(1.82) 6.95(1.02) 7.34(1.17) 7.25(1.25) 6.77(1.40) 5.81(1.13) 

QUBIC2 0.32(0.31) 0.14(0.24) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

autoCell 9.86(1.76) 9.98(1.87) 9.50(2.07) 9.04(2.10) 9.51(2.09) 10.12(2.42) 9.98(2.47) 9.92(2.59) 

scBC 14.93(1.78) 14.83(1.60) 13.96(1.65) 13.98(1.78) 13.44(1.84) 12.24(2.15) 10.41(2.01) 9.84(1.50) 



 

Table S7. 1-CE of different methods in different datasets (p=3000, n=600, L=4，

×10-3) , related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 2.87(0.69) 2.43(0.35) 2.41(0.34) 3.42(0.43) 2.98(0.36) 2.97(0.34) 2.95(0.33) 2.97(0.31) 

plaid 10.01(3.07) 8.90(3.21) 1.84(3.16) 0.70(2.05) 0.65(1.65) 0.83(1.73) 0.68(1.66) 0.69(1.57) 

Xmotif 0.01(0.05) 0.28(0.16) 0.00(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

CC 0.01(0.02) 0.01(0.02) 0.01(0.03) 0.05(0.05) 0.08(0.08) 0.11(0.10) 0.16(0.11) 0.22(0.15) 

Bimax 0.60(0.24) 0.59(0.22) 0.46(0.22) 0.55(0.23) 0.52(0.23) 0.47(0.23) 0.50 (0.23) 0.45(0.25) 

FABIA 9.29(1.07) 8.79(1.60) 6.91(1.55) 4.21(0.42) 5.41(0.78) 5.33(0.65) 5.13(0.70) 4.52(0.83) 

QUBIC2 0.14(0.08) 0.04(0.04) 0.09(0.08) 0.07(0.06) 0.01(0.05) 0.03(0.08) 0.01(0.07) 0.01(0.06) 

autoCell 7.65(1.02) 8.07(1.25) 8.19(1.03) 7.07(1.64) 6.25(1.52) 5.85(1.02) 4.82(1.33) 3.25(1.33) 

scBC 9.39(1.04) 9.89(1.00) 9.59(0.82) 9.45(0.95) 9.33(0.92) 8.67(1.20) 7.75(1.23) 6.36(1.13) 

 

Table S8. 1-CE of different methods in different datasets (p=6000, n=1500, L=5，

×10-3) , related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 1.1(0.12) 1.16(0.09) 1.11(0.12) 1.45(0.15) 1.22(0.12) 1.22(0.12) 1.23(0.13) 1.21(0.12) 

plaid 5.21(1.18) 3.1(1.5) 1.11(1.04) 0.69(1.49) 0.47(1.02) 0.54(1.13) 0.59(1.43) 0.16(0.55) 

Xmotif 0.01(0.02) 0.11(0.07) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

CC 0(0) 0(0) 0.01(0.01) 0.01(0.02) 0.01(0.02) 0.01(0.01) 0.03(0.03) 0.06(0.04) 

Bimax 0.32(0.1) 0.37(0.17) 0.31(0.19) 0.26(0.11) 0.27(0.1) 0.24(0.11) 0.23(0.11) 0.22(0.11) 

FABIA 4.63(0.85) 3.94(0.76) 3.55(0.5) 2.39(0.26) 4.07(2.67) 3.31(1.4) 3.97(1.91) 3.4(1.79) 

QUBIC2 0.06(0.05) 0.03(0.02) 0.03(0.03) 0.02(0.06) 0.02(0.05) 0.02(0.06) 0.02(0.06) 0.01(0.06) 

autoCell 4.61(0.15) 4.75(0.17) 4.4(0.41) 4(0.46) 3.65(0.34) 3.53(0.32) 3.06(0.33) 2.96(0.45) 

scBC 4.93(0.31) 4.94(0.24) 4.81(0.36) 4.82(0.39) 4.8(0.38) 4.79(0.49) 4.7(0.47) 4.47(0.42) 

 

Table S9. F score of different methods in different datasets（p=1000, n=300, 

L=3，×10-2）, related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 26.23(36.89)  6.93(6.53)  5.24(3.98)  13.08(3.87)  5.01(2.29) 6.30(5.84) 8.85(7.83) 10.32(6.5) 

plaid 38.03(39.01)  11.31(16.30)  3.02(8.30)  2.26(5.72) 1.28(3.84) 2.04(5.90) 1.71(4.66) 2.19(5.62) 

Xmotif 0.02(0.10)  1.44(1.14)  2.05(1.88)  0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 



CC 0.01(0.05)  0.02(0.10)  0.08(0.22)  0.30(0.38) 0.46(0.49) 0.62(0.68) 0.99(0.85) 1.16(0.95) 

Bimax 3.97(2.22)  3.82(1.95)  3.39(1.49)  3.22(1.75) 3.28(1.80) 3.29(1.40) 2.83(1.80) 2.81(1.69) 

FABIA 48.61(9.78)  47.15(9.30)  32.98(9.22)  26.21(8.17) 20.71(5.73) 17.64(4.79) 14.40(4.95) 10.15(2.5) 

QUBIC2 0.65(0.63) 0.28(0.48) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

autoCell 16.23(12.34)  14.58(9.72) 13.56(7.68) 12.60(4.16) 13.53(5.09) 15.51(9.54) 9.98(4.47) 13.13(6.4) 

scBC 199.0(32.9)  177.7(56.7)  100.5(67.3)  50.57(48.32) 37.18(33.52) 33.19(34.09) 23.38(27.21) 15.39(5.4) 

 

Table S10. F score of different methods in different datasets（p=3000, n=600, 

L=4，×10-2）, related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 2.51(2.73) 0.34(0.49) 0.17(0.25) 0.49(0.38) 0.16(0.03) 0.18(0.11) 0.17(0.07) 0.37(0.46) 

plaid 2.99(1.51) 1.63(1.22) 0.34(0.57) 0.13(0.4) 0.12(0.3) 0.15(0.31) 0.12(0.29) 0.12(0.26) 

Xmotif 0(0.01) 0.06(0.03) 0(0.01) 0(0) 0(0) 0(0) 0(0) 0(0) 

CC 0(0) 0(0) 0(0.01) 0.01(0.01) 0.02(0.02) 0.02(0.02) 0.03(0.02) 0.04(0.03) 

Bimax 0.12(0.05) 0.12(0.05) 0.09(0.05) 0.11(0.05) 0.1(0.05) 0.09(0.05) 0.1(0.05) 0.09(0.05) 

FABIA 7.63(1.32) 4.77(0.99) 5.38(2.32) 2.66(0.55) 3.04(0.74) 2.49(0.58) 2.02(0.5) 1.51(0.44) 

QUBIC2 0.03(0.02) 0.01(0.01) 0.02(0.02) 0.01(0.01) 0.01(0.01) 0.01(0) 0(0.01) 0(0) 

autoCell 0.84(0.57) 0.96(0.48) 0.93(0.42) 0.86(0.37) 0.72(0.35) 0.68(0.3) 0.6(0.3) 0.54(0.21) 

scBC 8.45(1.79) 11.48(1.91) 11.46(1.61) 9.84(1.75) 8.41(3.12) 5.03(3.82) 3.03(3.06) 1.1(1.01) 

 

Table S11. F score of different methods in different datasets（p=6000, n=1500, 

L=5，×10-2）, related to Figure 3 

dropout 

methods 
0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 

GBC 0.59(0.89) 0.1(0.11) 0.08(0.05) 0.13(0.08) 0.05(0.04) 0.05(0.01) 0.06(0.04) 0.09(0.11) 

plaid 2.09(2.25) 0.86(1.27) 0.21(0.22) 0.13(0.29) 0.09(0.19) 0.09(0.18) 0.11(0.26) 0.03(0.1) 

Xmotif 0(0.01) 0.02(0.01) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

CC 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.01(0.01) 0.01(0.01) 

Bimax 0.06(0.02) 0.07(0.04) 0.06(0.04) 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.04(0.02) 

FABIA 5.32(0.62) 4.9(0.7) 3.7(0.81) 2.72(0.51) 2.53(1.44) 2.15(1.24) 1.99(1.21) 1.46(0.89) 

QUBIC2 0.01(0.01) 0.01(0) 0.01(0.01) 0(0.01) 0(0) 0(0) 0(0.01) 0(0) 

autoCell 0.2(0.01) 0.26(0.07) 0.26(0.06) 0.25(0.07) 0.22(0.05) 0.22(0.06) 0.15(0.06) 0.11(0.05) 

scBC 5.76(0.37) 4.95(0.34) 3.89(0.65) 2.91(0.65) 2.82(0.63) 2.71(0.7) 2.54(0.72) 1.74(0.78) 
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