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molQTL
• Molecular quantitative trait locus (molQTL) 

is an umbrella term for loci with a genetic 
association for a quantitative level of a 
molecular trait 



molQTL的类型
• 根据研究的
分子性状不
同



molQTL的类型
• 根据分析的范围：

• cis-QTL：
• 在所研究的分子特征（如基
因）的附近（100kb-1Mb）
的窗口内的位点

• 通过同一染色质上的分子相
互作用影响（启动子、增强
子、沉默子等顺式作用元件
cis-acting element）

• trans-QTL：
• 远端的、甚至其他染色体上
的位点

• 通过其他分子（如转录因子
等反式作用因子trans-acting 
factor）的介导



molQTL vs GWAS

• Nearly identical approaches that use regression to associate genetic 
variation with a quantitative phenotype in a population sample

• 区别：
• QTL——分子性状，GWAS——宏观表型

• QTL——置换检验（permutation）控制FDR，GWAS——设置固定的
Bonferroni阈值

• QTL——与分子性状相关的predefined loci（区分cis/trans），GWAS——没
有明确的染色体区域

• 微妙关系



molQTL的步骤

• sample collection

• genotyping & quality control

• molecular phenotype 
assessment

• mapping & testing

• visualization

• extention



Sample collection

• data collection: selecting the study cohort from which genotype and 
molecular phenotyping data will be acquired

• resolution：
• individual

• tissue

• single cell
• cell type

• cell state

• 样本的人口学特征



Bulk vs single-cell



Database 



Genotyping 

• genotyping:
• whole-genome sequencing: including non-coding regions, increased power 

for identifying causal variants, more complex genetic variants (short tandem 
repeats, short indels, structural variants)

• exome sequencing / genotype calling from RNA-seq

• SNP arrays + imputation: common variants

• quality control:

• exclusion of samples: poor genotyping quality

• exclusion of variants: low complexity regions of genome, high missingness, 
failing Hardy-Weinberg equilibrium and imputation quality

• variants in X, Y chromosomes and mitochondrial DNA



Molecular phenotype assessment

• transcriptomic phenotypes: RNA-seq



Molecular phenotype assessment

• other molecular phenotypes
• methylation of cytosines at CpG sites: arrays

• chromatin accessibility: DNase-seq, ATAC-seq

• histone modification: ChIP-seq

• protein: proteomic assays



Mapping 

• Quality control of samples

• Data normalization

• Selection of covariates

• Computation of the association

• FDR control to identify significant association



Quality control

• Quality control to exclude problematic samples
• RNA-seq: quality of the RNA, sequencing data, alignment and quantification 

(the fraction of reads originating from exonic regions)

• RIN (RNA Integrity Number), ROS (RNA Quality Score)

• Sample or label swaps

• Inspected for outlier samples and batch effect



Normalization 

• Read depth: quantile normalization, TMM (trimmed mean of M 
values), size factor from DESeq

• Feature selection: low or undetectable levels, limited affinity or 
mapping accuracy

• Phenotypes (molecular features) must be transformed to conform to 
the assumption of the regression model
• Homoscedasticity, Gaussian residuals

• Inverse normal transformation



Confounding & Covariates 

• Biological heterogeneity across samples:
• Differences in cell type composition

• Technical heterogeneity arising during collection and processing of samples

• Population stratification

• Population structure
• principal components derived from genotype data

• Latent variables computed from the normalized phenotypes
• Principal components or probabilistic estimation of expression residuals (PEER) 

factors computed from the molecular data



PEER

• PEER stands for 
"probabilistic estimation 
of expression residuals". 
It is a collection of 
Bayesian approaches to 
infer hidden 
determinants and their 
effects from gene 
expression profiles using 
factor analysis methods.



Association 

• Bulk:
• the errors are assumed to be Gaussian, is reasonable for microarray-based 

gene expression measurements. 

• with gene expression data collected through RNA sequencing, the measured 
gene expression level is the total number of sequence reads mapped to a 
specific gene, which needs to be adjusted for total sequencing depth and 
other factors. These data may be better modeled by other distributions, for 
example, negative binomial, while accounting for factors that may impact the 
observed sequencing reads.

• allelic-specific expression to identify cis-eQTLs: TReCASE, RASQUAL, and 
mixQTL. (杂合子两条染色体转录本的不平衡性)

• context-dependent eQTLs: sex-biased eQTLs, population-biased eQTLs, 
including an interaction term between the context variable and the SNP 
genotype in the regression model



association

• covariates and confounding:
• add covariates

• linear mixed-effect model:



Cell type & cell state

• cell type: groups of cells from distinct, 
irreversible developmental lineages. 
→ discrete

• cell state: functionally specialized, 
often plastic, subpopulations of cells. 
These states can be discrete (for 
example, T helper cells) or continuous 
(for example, developmental states).



Cell-type specific eQTL



Association 
• Cell-type-specific eQTL (ct-eQTLs) with bulk data:

• identifying ct-eQTLs by investigating whether there is an interaction effect 
between the surrogate score for a cell type and candidate SNP's genotype on 
bulk gene expression levels from the collected samples.

mn is a proxy marker for the cell type of interest in the nth individual

• Instead of deriving cell-type-specific proxy markers or enrichment scores, the 
estimated cell type proportions can also be used as a proxy for a given cell 
type.

𝜋𝑛𝑘 denotes the estimated proportion of the kth cell type for this individual, 
where there is a total of K cell types



Association 

• Cell-type-specific eQTL (ct-eQTLs) with bulk data:
• takes into account all cell types simultaneously

• Another way to parametrize this model



Association 

• Cell-type-specific eQTLs with single-cell data
• Pseudo-bulk (aggregation): single-cell data are first annotated to distinct cell 

types, and the cells annotated to the same cell types from a specific subject 
are combined to derive cell-type-specific gene expression levels. eQTL
methods for bulk samples can then be applied to detect ct-eQTLs.

• Single-cell individually: Poisson mixed effects regression to model the effects 
of SNPs, cell states (which can be both discrete and continuous), batch 
structure, and other covariates (such as sex, age, genotype principal 
components and gene expression principal components, and percentage of 
mitochondrial unique molecular identifiers (UMIs)) on the observed gene 
expression level measured by UMI counts at the single-cell level.



Association 

• More
• CellRegMap

we have N subjects, with mn cells collected from the nth subject, and a total 
of C different cellular contexts are defined for each cell.

• single-cell unsupervised regulation of gene expression (SURGE)



Multiple test correction: FDR control

• Two levels:
• Multiple variants per molecular trait

• Multiple molecular traits cross the genome

• Permutation test
• the permutations determine the probability of observing the lead association 

observed for a feature by chance among all variants tested for the feature, 
accounting for the first layer of multiple testing correction.

• FDR: false discovery rate
• Storey q values

• Benjamini-Hochberg

Two types of multiple test correction
• Bonferroni adjustment (GWAS)
• FDR control (eQTL)



Permutation test



Rethinking P values

• Please mark each of the statements below as “true” or “false”.
我研究两个变量之间是否存在效应（effect），以没有effect作为零假设H0，
得到了一个P<0.05的检验结果，那么我能得到以下哪些结论：

1. 零假设成立的概率小于0.05

2. 观察到的效应（effect）仅仅是由随机性产生的概率小于0.05

3. 在零假设成立时，得到当前的观测样本的概率小于0.05

4. 这两个变量之间存在效应的概率大于0.95

5. 如果我拒绝原假设，犯错（I型错误）的概率小于0.05

6. 我如果重复这项研究，得到同样结果（P<0.05）的概率大于0.95

以上说法都不对！



Rethinking P values

• The hybrid of two theories: Fisher & Neyman-Pearson

Nuzzo, R. Scientific method: 
Statistical errors. Nature 506, 
150–152 (2014). 
https://doi.org/10.1038/506150a

https://doi.org/10.1038/506150a


The lady tasting tea

• Fisher 给一位名叫 Muriel Bristol 的女士倒了一杯茶，这位女
士号称能够分辨先倒茶和先倒牛奶的区别。Fisher 当然想用
实验检验一下：这位女士的味觉是否有这么敏锐？Fisher 倒
了 8 杯奶茶：其中 4 杯 “先奶后茶”，其余 4 杯“先茶后
奶”。随机打乱次序后，Fisher 请 Bristol 品尝，并选出“先
奶后茶” 的 4 杯，看她是否能分辨奶和茶的顺序。



Fisher’s significance test

• Null hypothesis only

• In null-hypothesis significance 
testing, the p-value is the 
probability of obtaining test results 
at least as extreme as the result 
actually observed, under the 
assumption that the null hypothesis 
is correct. 

• p-value is the minimal significance 
level that would result in a rejection 
of the null hypothesis.



Fisher’s significance test

• The p-value is a measure of (im)plausibility of observed as well as 
unobserved more extreme results, assuming a true null hypothesis.

• A very small p-value:
• either an exceptionally rare chance has occurred, or the theory of random 

distribution [H0] is not true [i.e., strong evidence against H0]

• A large p-value:
• a significant result provides evidence against H0, whereas a non-significant 

result simply suspends judgment—nothing can be said about H0.

• In Fisher’s view, the p-value is an epistemic measure of evidence from a 
single experiment and not a long-run error probability, and he also stressed 
that ‘significance’ depends strongly on the context of the experiment and 
whether prior knowledge about the phenomenon under study is available. 
(quasi-Bayesian interpretation) 



Fisher’s significance test: P values

• P-values can indicate how incompatible the data are with a specified 
statistical model.

• P-values do not measure the probability that the studied hypothesis 
is true, or the probability that the data were produced by random 
chance alone.

• A p-value, or statistical significance, does not measure the size of an 
effect or the importance of a result.

• A relatively large p-value does not imply evidence in favor of the null 
hypothesis. 



Neyman-Pearson hypothesis test

• Two competing hypotheses: Type I error 
& type II error

• Confidence level & Significance Levels: 
control the type I error

• Power function

Critical 

value



Neyman-Pearson hypothesis test

• Two competing hypotheses: 
Type I error & type II error

• Confidence level & 
Significance Levels: control 
the type I error

• Power function



Neyman-Pearson hypothesis test

• Two competing hypotheses: 
Type I error & type II error

• Confidence level & 
Significance Levels: control 
the type I error

• Power function

The power function of a hypothesis test with 

rejection region 𝑅 is the function of 𝜃 defined 
by 𝛽(𝜃) = 𝑃𝜃(𝑋 ∈ 𝑅)

Z test



Neyman-Pearson hypothesis test

• Neyman–Pearson’s model is only about rules of behavior in the long-
run, so that “we shall reject H when it is true not more than say, once 
in a hundred times, and in addition we may have evidence that we 
shall reject H sufficiently often when it is false”

• Accordingly, ‘hypothesis tests’ are concerned with minimizing Type II 
errors subject to a bound on Type I errors, and α is a prescription for 
‘inductive behaviors’ and not evidence for a specific result.

• error control is a pre-selected fixed measure; α is therefore a rigidly 
fixed level, not a random variable based on the actual data, and α 
applies only to infinitely random selections from the same finite 
population, not to an actual result in a single experiment. 



Two theories

• the underlying 
philosophy and the 
interpretation of the 
[Fisher versus N–P] 
results is profoundly 
different



Two theories

It is often overlooked that ‘significance tests’ as well as ‘hypotheses tests’ were specifically 
developed for controlled experimental settings (like in Fisher’s case agricultural research), 
and not studies based on observational data. Paramount to experimental settings and 
frequentist tests is randomization (i.e., random assignment and probability sampling).



Confusion: “significance level”
• the Type I error is a conditional 

probability which can be written 
as α = p(reject H0|H0, true). It is a 
pre-selected fixed measure that 
applies only to infinitely random 
selections from the same finite 
population, and not to an actual 
result in a single experiment. 

• p values are conditional 
probabilities of the data, so they 
do not apply to any specific 
decision to reject H0 because 
any particular decision to do so 
is either right or wrong (the 
probability is either 1 or 0). Only 
with sufficient replication could 
one determine whether a 
decision to reject H0 in a 
particular study was correct.A typical misuse: ‘roving alphas’



Debate 
• Neyman–Pearson’s model is considered to be theoretically consistent and 

is generally accepted as ‘frequentist orthodoxy’ in mathematical statistics. 
However, the emphasis upon decision rules with stated error rates in 
infinitely repeated trials may be applicable to quality control in industrial 
settings, but seems less relevant to assessment of scientific hypotheses 
(Fisher, 1955).

• On the other hand, the supposed ‘objective’ evidential nature of p values 
was also questioned early on, especially the fact that p values only test one 
hypothesis and are based on tail area probabilities was early on considered 
a serious deficiency (Jeffreys, 1961).
• Dependence on tail area probabilities means that the calculation of p values is not 

only based on the observed results but also on ‘more extreme results’, i.e., results 
that have not occurred.

• ‘stopping rule’ paradox: what is ‘more extreme results’ depends on the actual 
sampling plan in a study



ASA Statement on p-values (2016)



Multiple test burden

• Multiple test: family-wise error rate (FWER) — the probability of at 
least one type I error

• Boole's inequality

• Bonferroni correction

• False discovery rate (FDR)



The distribution of P-values

• P-values are random variables

• Under null hypothesis: uniform 
distribution 𝒰(0,1)

• When 𝐻0 is false: a good T will tend to 
be larger under H1, so p will be smaller. 

consider a left-sided one-
tailed hypothesis test, 

𝐹𝑇(𝑡) is the cumulative 
distribution function of 
the test statistic under 
the null hypothesis. 



Benjamini-Hochberg

• 将p-value从小到大排好序后，选定前𝐿个满足 𝑝𝐿 ≤ 𝐿
𝛼

𝑀
的点：𝛼是

FDR阈值，M是总检验次数
𝐻0为真时，𝑝值服从[0,1]均匀分布，
𝑀0个𝐻0为真的检验，落在[0, ℎ]内
的𝑝值数量为𝑀0ℎ。现在拒绝掉𝐿个
𝑝值最小的检验，对应的最大𝑝值

为ℎ = 𝑝𝐿，则ℎ不超过
𝛼𝐿

𝑀
。



Storey q values
• the q-value in the Storey-Tibshirani procedure 

provides a means to control the positive false 
discovery rate (pFDR).

• The q-value is defined as the minimum pFDR at 
which the feature can be called significant.

Large 𝑚: 𝑃(𝑅 > 0) ≈ 1, 𝑝𝐹𝐷𝑅 ≈ 𝐹𝐷𝑅 ≈
𝐸 𝑉

𝐸 𝑅

sig阈值为𝑡时：𝐸 𝑅 = #{𝑝𝑖 ≤ 𝑡}; 𝐸 𝑉 = 𝑚0𝑡 = 𝑚𝜋0𝑡

Estimate 𝜋0 =
𝑚0

𝑚
观测到大于𝜆的𝑝
值个数/全部𝑚个
检验都是𝐻0成立
时大于𝜆的𝑝值个
数



Notes 

• MAF threshold: 低MAF会增加假阳性风险

• trans-QTL: 更容易出现artefacts
• Sequence similarity between a cis-QTL feature and another feature in trans 

(mis-mapping of reads)
• More smaller and more cell type-specific effects than cis-QTLs

• Effect size estimation
• Slope, SVE, allelic fold change (aFC) [携带替代eVariant等位基因的单倍型与
携带参考等位基因的单倍型的表达量之间的对数比（log-ratio），单位为
log2]

• Sample size

• Horizontal pleiotropy, haplotypic effect: variants in LD for cis-QTL



Software 

• MatrixeQTL

• FastQTL

• QTLtools

• TensorQTL



Visualization 



Fine-mapping

• Fine-mapping
• Allelic heterogeneity: multiple LD-

independent molQTLs in the same genomic 
region affect the same molecular feature.

• Methods:

• Iterative conditioning: forward selection

• Posterior inclusion probabilities & 
credible sets of variants: CAVIAR, DAP-G, 
FINEMAP, SuSiE



Colocalization

• Genetic colocalization: The 
phenomenon whereby genetic 
factors at a particular locus are 
shared between two or more traits

• Tests for genetic colocalization try to 
separate between two scenarios: (i) 
there is a causal variant for trait A 
that is distinct from the causal 
variant for trait B, whilst being at the 
same locus, and (ii) the causal variant 
for trait A and trait B are shared. 



Colocalization 



Colocalization 

• 第一种设想 H0: 表型1（GWAS）和 表型2 （以eQTL为例）与某个
基因组区域的所有SNP位点无显著相关； 

• 第二种设想 H1/H2: 表型1（GWAS）或表型2（以eQTL为例）与某
个基因组区域的SNP位点显著相关； 

• 第三种设想 H3: 表型1（GWAS）和 表型2 （以eQTL为例）与某个
基因组区域的SNP位点显著相关，但由不同的因果变异位点驱动； 

• 第四种设想 H4: 表型1（GWAS）和 表型2 （以eQTL为例）与某个
基因组区域的SNP位点显著相关，且由同一个因果变异位点驱动

• 共定位分析，本质上是在检验第四种的后验概率



Colocalization in coloc

• configuration: one possible combination of pairs of binary vectors 
indicating whether the variant is associated with the selected trait.

• We can group the configurations into five sets, 𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆4, 
containing assignments of all SNPs 𝑄 to the functional role 
corresponding to the five hypothesis 𝐻0, 𝐻1, 𝐻2, 𝐻3, 𝐻4. 

Bayes factor (BF)

Approximate Bayes factor (ABF)



prior

• p0 is the prior probability that a SNP is not associated with either trait, 
p1 is defined as the prior probability that the SNP is only associated 
with trait 1, p2 the prior probability that the SNP is associated only 
with trait 2, while p12 is the prior probability that the SNP is 
associated with both traits



ABF

• phenotype-genotype

• asymptotically

• BF

Bayes factor (BF)

the relative contributions of the prior (W) 

and likelihood (V) to the inference.

under the null we assume that the effect size β = 0. Under

the alternative, β is normally distributed with mean 0 and 

variance W



sensitivity analysis 



Colocalization: SuSiE 

• coloc has adopted the SuSiE framework for fine mapping in the presence of multiple 
causal variants. This framework requires the LD matrix is known, so first check our 
datasets hold an LD matrix of the right format. =check_dataset= should return NULL 
if there are no problems, or print informative error messages if there are.

• fine-mapping: variable selection

• Sum of Single Effects (SuSiE) model

each vector bl is a “single effect” vector; that is, a vector with exactly one non-zero element. 

L=1: “single effect regression” (SER) model

L>1: Iterative Bayesian Stepwise Selection (IBSS)

posterior inclusion probability (PIP)

https://stephenslab.github.io/susie-paper/index.html


Replication 

• Simple overlap of significant variant-
feature pairs between two sets: 
suboptimal
• Difference in power
• LD contamination

• 𝜋1 statistic
• quantifies the proportion of true positives 

based on the distribution of P values
1 − ො𝜋0

• colocalization

• using allelic data



More concern

• Tissue and cell context specificity

• Population differences

• Multi-omic QTL integration
• combining fine-mapping and co-localization methods to identify shared 

signals, followed by mediation analysis to identify causal relationships.

• GWAS integration
• GWAS co-localization analyses: assess whether the association signal for two 

traits in a given genomic region is driven by shared or distinct causal variants.
• Transcriptome-wide association studies (TWAS)

• Dynamic, spatial patterns



More analysis



eQTL with single-cell data



eQTL with single-cell data



QTL with single-cell genomics

• pseudo-bulk data: aggregated 
expression of each gene in each 
cluster or cell type with genotypes 
of individuals at nearby variants

• single-cell resolution: cell type & cell 
state
• sparsity & non-normality: Poisson, 

negative binomial, multinomial

• scalability: quality of cells, consistency 
of outputs, memory and computation 
(parallelizing, sparse matrices)



Cell-type specific eQTL

• Bulk data:
• 把一个bulk里面能够反映各种细胞类型的比例或
者代理指标作为协变量：交互效应

• Single-cell data: Cell-type annotation
• pseudo-bulk: 根据不同细胞类型把总样本分开；
再将每种细胞类型的各个细胞按照个体整合成一
个新的“个体”（先整合后bulk标准化/先单细胞
标准化再整合）； 再用标准eQTL方法

• Treat a single-cell as an individual sample: 需要考
虑单细胞的特点：non-Gaussian, dropout, batch 
effect, etc.

• cellRegMap



From cell type-specific to dynamic eQTL

                                                    

                                

                                   

           

                                          

           

         

                                   

      

      

            

      

        

     
     

     

     
     

     

          

                           



From single-cell eQTL to more molQTLs



Limitation 

• Donor selection and sample size
• “environment”: lifestyle, demographics, other biomedical traits, etc.
• ancestry
• disease-relevant

• Biospecimen selection and resolution

• Molecular read-outs
• many classes of mRNA and non-coding RNA lacking a polyA tail or subject to 

rapid degradation

• Rare variants

• LD contamination and pleiotropy (co-expression)
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