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molQTL vs GWAS

* Nearly identical approaches that use regression to associate genetic

variation with a quantitative phenotype in
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Molecular assay Whole-genome
(RNA-seq) sequencing or SNP array

l T I A I lI gﬁx { =70 donors v
Feature quantification Genotyping and
In O y g }‘R (gene expression levels) imputation (arrays)
¢ l

Remove poorly

quantified features Genotype quality control

(lowly expressed genes) l

Ei:‘rﬁzﬁ;;ﬁgpﬁd inverse Minor allele frequency
filter (>1% or >5%)

normal transformation
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* genotyping & quality control PEER ftoror PonEe s

* molecular phenotype .

Molecular trait ~ Genotype +
PEERs + PCs
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* mapping & testing ¢
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Completion checks Fine-mapping and

* Number of features with molQTLs identification of
consistent with prior studies? independent

* Enrichment of associations close to variants associated
features or relevant annotations? with each feature

* 11 replication analysis, concordance
with ASE or similar validation



Sample collection

 data collection: selecting the study cohort from which genotype and
molecular phenotyping data will be acquired

. Bulk samples Purified cells Single cells
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Bulk vs single-cell

Samples Methods

Key ideas
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Single
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Detect interactions effects
between candidate eQTL
genotypes and cell-type-
specific proxy markers (e.g.,
cell type proportions) on gene
expression levels in bulk

tissues

Detect differential effects of
candidate eQTL genotypes on
gene expression levels for
different cell types and/or
contexts inferred from single-

cell expression data

Applicable to
large collection
of eQTL studies
based on bulk

samples

High-resolution
cell types and
different
molecular

contexts

Limited resolution for
cell types and
dependence on
informative and robust
cell-type-specific proxy

markers

Limited number of
subjects available and
sparsity in single-cell

gene expression data

Bulk samples

Collect bulk expression and
genotype information

.

Quality control for expression and
genotype data

:

Infer cell-type-specific/context-
dependent proxies

'
Identify cell-type-specific/context-
dependent eQTLs through
detecting interaction effects

Single cells

Collect single cell and
genotype information

:

Quality control for single cell and
genotype data

{

Infer cell types and molecular
contexts for each cell

l

Identify cell-type-specific/context-
dependent eQTLs through
regression analysis



Table 1| Notable recent molQTL studies and resources

Database

Study/resource Type Number of Population ancestries Biospecimens Molecular phenotypes
donors
eQTL Catalogue™ Aggregated database of 73-948 per  88.5% European ancestries Diverse Transcriptome phenotypes
reanalysed data study, total
8,193
GTEx*® Consortium with centralized 73-706 American; 85% European and 49 postmortem tissues  Gene expression and
data production and analysis 11% African ancestries splicing, others in smaller
scale
eQTLGen’ Consortium with federated 31,684 Predominantly European Whole blood Gene expression
analysis
GoDMC* Consortium with federated 32,851 European ancestries Whole blood DNA methylation
analysis
Hawe et al.*® Research project 6,994 European and South Asian Whole blood DNA methylation
ancestries
Ferkingstad et al.*° Single-cohort study 35,559 Icelandic Plasma Aptamer proteomics
Jerber et al.”*® Research project 215 European ancestries In vitro differentiated scRNA-seq . . .
iPSCs Table 2 | Commonly used repositories for different molQTL
Yazar et al.'*® Research project 982 European ancestries PBMCs scRNA-seq data tYpES
iPSC, induced pluripotent stem cell; molQTL, molecular quantitative trait locus; PBMC, peripheral blood mononuclear cell; scRNA-seq, single-cell RNA sequencing. . — - — Controlled a — SI.IIT'II‘MW N
European Nucleotide European Genome- Zenodo
Archive (ENA) Phenome Archive (EGA) Synapse
Sequence Read Archive Database of Genotypes eQTL Catalogue
(SRA) and Phenotypes (dbGaP) (if processed with
ArrayExpress Synapse (supports both uniform workflows)
(for microarray data) access modes)

Synapse

melQTL, molecular quantitative trait locus.



Genotyping

* genotyping:
* whole-genome sequencing: including non-coding regions, increased power
for identifying causal variants, more complex genetic variants (short tandem
repeats, short indels, structural variants)

* exome sequencing / genotype calling from RNA-seq
* SNP arrays + imputation: common variants

e quality control:
e exclusion of samples: poor genotyping quality
» exclusion of variants: low complexity regions of genome, high missingness,
failing Hardy-Weinberg equilibrium and imputation quality

e variantsin X, Y chromosomes and mitochondrial DNA



Molecular phenotype assessment

Gene expression (HISAT and featureCounts)
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Molecular phenotype assessment

e other molecular phenotypes
* methylation of cytosines at CpG sites: arrays
e chromatin accessibility: DNase-seq, ATAC-seq
* histone modification: ChlP-seq
* protein: proteomic assays



Mapping

e Quality control of samples

* Data normalization

* Selection of covariates

 Computation of the association

* FDR control to identify significant association



Quality control

* Quality control to exclude problematic samples

* RNA-seq: quality of the RNA, sequencing data, alignment and quantification
(the fraction of reads originating from exonic regions)

* RIN (RNA Integrity Number), ROS (RNA Quality Score)
 Sample or label swaps
* Inspected for outlier samples and batch effect



Normalization

e Read depth: quantile normalization, TMM (trimmed mean of M
values), size factor from DESeq

* Feature selection: low or undetectable levels, limited affinity or
mapping accuracy

* Phenotypes (molecular features) must be transformed to conform to
the assumption of the regression model
 Homoscedasticity, Gaussian residuals
* Inverse normal transformation



Confounding & Covariates

* Biological heterogeneity across samples:

 Differences in cell type composition
* Technical heterogeneity arising during collection and processing of samples
* Population stratification

* Population structure
* principal components derived from genotype data

 Latent variables computed from the normalized phenotypes

* Principal components or probabilistic estimation of expression residuals (PEER)
factors computed from the molecular data



PEER

d
Residuals | ~ Geno-
type

Standard eQTL mapping on
PEER residuals

* PEER stands for
"probabilistic estimation EHa
of expression residuals”.

It is a collection of
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Association

* Bulk: Yng :ﬁg =+ ﬁgsxns T €ngs

* the errors are assumed to be Gaussian, is reasonable for microarray-based
gene expression measurements.

* with gene expression data collected through RNA sequencing, the measured
gene expression level is the total number of sequence reads mapped to a
specific gene, which needs to be adjusted for total sequencing depth and
other factors. These data may be better modeled by other distributions, for

example, negative binomial, while accounting for factors that may impact the
observed sequencing reads.

* allelic-specific expression to identify cis-eQTLs: TReCASE, RASQUAL, and
mixQTL. (251 PN R G R L KA AP 1)
e context-dependent eQTLs: sex-biased eQTLs, population-biased eQTLs,

including an interaction term between the context variable and the SNP
genotype in the regression model




assoclation

 covariates and confounding:

e add covariates
* linear mixed-effect model:

Molecular trait ~ Genotype +

PEERs + PCs

c,

N N
| |
Phenotype SNP effect Moise
Fixed-effect covariates, Random effects,

e.g., age, sex and soon  e.g., population
structure

y =\Wa+ gf+u + ¢ S

=0

B=0




Cell type & cell state

e cell type: groups of cells from distinct,
irreversible developmental lineages.
— discrete

e cell state: functionally specialized,
often plastic, subpopulations of cells.
These states can be discrete (for
example, T helper cells) or continuous
(for example, developmental states).

Cell transitions
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Association

* Cell-type-specific eQTL (ct-eQTLs) with bulk data:

 identifying ct-eQTLs by investigating whether there is an interaction effect
between the surrogate score for a cell type and candidate SNP's genotype on
bulk gene expression levels from the collected samples.

Yng — )Bg + ﬁgsmm + ;Bgmmw. + ﬁg,sm (mﬂ-ﬁ X mﬂ.) + Engs

m_ is a proxy marker for the cell type of interest in the nth individual

* |Instead of deriving cell-type-specific proxy markers or enrichment scores, the
estimated cell type proportions can also be used as a proxy for a given cell

type.

Yng = JBH‘ + 695 Tns + :ggkwﬂk + ﬁgﬁsk (‘rﬂs X Trﬂ.k) + Engs -

T, denotes the estimated proportion of the kth cell type for this individual,
where there is a total of K cell types



Association

* Cell-type-specific eQTL (ct-eQTLs) with bulk data:

» takes into account all cell types simultaneously

K K
Yng = :BQ + ﬁﬂﬂ Tng T z,t;;'| ﬁgkﬁnk + Tng (2&:—_1 ;Sg.,sk It ?T”;f_) + Eng,

* Another way to parametrize this model

K
Yng = 2 k=1 (ﬁgfr- + ﬁg,sﬂ: X Iﬂ-‘:) Tk + Eng -



Association

* Cell-type-specific eQTLs with single-cell data

e Pseudo-bulk (aggregation): single-cell data are first annotated to distinct cell
types, and the cells annotated to the same cell types from a specific subject
are combined to derive cell-type-specific gene expression levels. eQTL
methods for bulk samples can then be applied to detect ct-eQTLs.

 Single-cell individually: Poisson mixed effects regression to model the effects
of SNPs, cell states (which can be both discrete and continuous), batch
structure, and other covariates (such as sex, age, genotype principal
components and gene expression principal components, and percentage of
mitochondrial unique molecular identifiers (UMls)) on the observed gene
expression level measured by UMI counts at the single-cell level.



Association

* More
e CellRegMap

we have N subjects, with m, cells collected from the nth subject, and a total
of C different cellular contexts are defined for each cell.

YUngi — ﬁg + ﬁgs Tps + fBg,si T, . T Ung T Cngi T Engi,

Bgsi~ N (U,. J%KGE), Upg ~ IV (U, Ji)__ﬁ), Cngi ~ IN (U, JE:,E) Engi ~ N (O,ﬂ'?’,)

* single-cell unsupervised regulation of gene expression (SURGE)

C
Yngi — ﬁg T ﬁg&zn& + Zc:l hnécﬂgsczna T Ung T+ Engi s



Multiple test correction: FDR control

e T | - Two types of multiple test correction
WO levels. e Bonferroni adjustment (GWAS)
* Multiple variants per molecular trait * FDR control (eQTL)

* Multiple molecular traits cross the genome

* Permutation test

* the permutations determine the probability of observing the lead association
observed for a feature by chance among all variants tested for the feature,
accounting for the first layer of multiple testing correction.

* FDR: false discovery rate

e Storey q values
* Benjamini-Hochberg



Permutation test
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Rethinking P values

e Please mark each of the statements below as “true” or “false”.

WAL E Al SR, (effect) , LUk A effect/E v FR1H,,
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Rethinking P values

* The hybrid of two theories: Fisher & Neyman-Pearson

For all the Pvalue's apparent precision, Fisher intended it to be just one part of a fluid, non-
numerical process that blended data and background knowledge to lead to scientific
conclusions. But it soon got swept into a movement to make evidence-based decision-making
asrigorous and objective as possible. This movement was spearheaded in the late 1920s by
Fisher's bitter rivals, Polish mathematician Jerzy Neyman and UK statistician Egon Pearson,
who introduced an alternative framework for data analysis that included statistical power,
false positives, false negatives and many other concepts now familiar from introductory
statistics classes. They pointedly left out the Pvalue.

But while the rivals feuded — Neyman called some of Fisher's work mathematically “worse
than useless”; Fisher called Neyman's approach “childish” and “horrifying [for] intellectual
freedomin the west” — other researchers lost patience and began to write statistics manuals
for working scientists. And because many of the authors were non-statisticians without a
thorough understanding of either approach, they created a hybrid system that crammed
Fisher's easy-to-calculate Pvalue into Neyman and Pearson's reassuringly rigorous rule-based
system. This is when a P value of 0.05 became enshrined as 'statistically significant’, for
example. “The Pvalue was never meant to be used the way it's used today,” says Goodman.

Nuzzo, R. Scientific method:
Statistical errors. Nature 506,
150-152 (2014).
https://doi.org/10.1038/506150a
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Fisher’s significance test

* Null hypothesis only

* In null-hypothesis significance
testing, the p-value is the
probability of obtaining test results
at least as extreme as the result
actually observed, under the
assumption that the null hypothesis
is correct. p=Pr(T(X) > T(z)|Hyp),)

e p-value is the minimal significance
level that would result in a rejection
of the null hypothesis.

probability of observation

—_—

. Identify the null hypothesis.

Determine the appropriate test statistic and its distribution under the

assumption that the null hypothesis is true.

Calculate the test statistic from the data.

4. Determine the achieved significance level that corresponds to the test sta-
tistic using the distribution under the assumption that the null is true.

5. Reject H, if the achieved significance level is sufficiently small. Otherwise

reach no conclusion.

P

e

P-values and statistical significance explained

True value under the null hypothesis
and most likely observation

|

Significance threshold
corresponding to a given
significance level (e.g. 0.05)

Observed p-value
(significance level)

very unlikely
observations

Observed
result (value)

very unlikely
observations

>

set of possible results calculator



Fisher’s significance test

* The p-value is a measure of (im)plausibility of observed as well as
unobserved more extreme results, assuming a true null hypothesis.

* A very small p-value:

- either an exceptionally rare chance has occurred, or the theory of random
distribution [H_] is not true [i.e., strong evidence against H ]

* A large p-value:

- a significant result provides evidence against H,, whereas a non-significant
result simply suspends judgment—nothing can be said about H,.

* |[n Fisher’s view, the p-value is an epistemic measure of evidence from a
single experiment and not a long-run error probability, and he also stressed
that ‘significance’ depends strongly on the context of the experiment and
whether prior knowledge about the phenomenon under study is available.
(quasi-Bayesian interpretation)



Fisher’s significance test: P values

* P-values can indicate how incompatible the data are with a specified
statistical model.

* P-values do not measure the probability that the studied hypothesis
is true, or the probability that the data were produced by random
chance alone.

* A p-value, or statistical significance, does not measure the size of an
effect or the importance of a result.

* A relatively large p-value does not imply evidence in favor of the null
hypothesis.



Neyman-Pearson hypothesis test ...

tion that O, is true). Otherwise accept 6,

Ho value H,
[
I
. I
* Two competing hypotheses: Type | error |
I
& type Il error
|
. . .. |
* Confidence level & Significance Levels: !
1
control the type | error ﬁ
o
° Power funCtiOn Type Il error Type | error
1. Identify a hypothesis of interest, 85, and a complementary hypothesis, ©,. Study findings Truth
2. Determine the appropriate test statistic and its distribution under the Wil hnothesds Nigll irvsathesis
assumption that 6, is true. s trueyp e falsgp
3. Specify a significance level (a), and determine the corresponding critical
value of the test statistic under the assumption that 6, is true. ; ;
4. Calculate the test statistic from the data. Nu.l‘l hypothesm d AR TR Ty[;:cll‘l erro‘r (B )
5. Reject O, and accept Oy if the test statistic is further than the critical value 16 DAL TEecte (false negative)
from the expected value of the test statistic (calculated under the assump- Nuilsl i?é);t:;ms Tygfilieei)rgsrit(i?/)e) IS PRI

o and [3 represent the probability of Types I and II errors, respectively.



Neyman-Pearson hypothesis test

* Two competing hypotheses:

Type | error & type Il error

* Confidence level &
Significance Levels: control
the type | error

e Power function

Non rejection
Region

Rejection Region Rejection Region

o‘\

® \ Significance Level

m/
N

Significance Level Confidence Level




Neyman-Pearson hypothesis test
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The power function of a hypothesis test with
rejection region R is the function of 6 defined

* Two competing hypotheses:
Type | error & type Il error

e Confidence level & by B(6) = Pg(X €R)
Significance Levels: control (X ¢ ) — | probability of a Type 1 error if§ € O,
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Reject Hy 0.05 0.32821
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Neyman-Pearson hypothesis test

* Neyman—Pearson’s model is only about rules of behavior in the long-
run, so that “we shall reject H when it is true not more than say, once
in @ hundred times, and in addition we may have evidence that we
shall reject H sufficiently often when it is false”

* Accordingly, ‘hypothesis tests’ are concerned with minimizing Type Il
errors subject to a bound on Type | errors, and a is a prescription for
‘inductive behaviors’ and not evidence for a specific result.

e error control is a pre-selected fixed measure; a is therefore a rigidly
fixed level, not a random variable based on the actual data, and a
applies only to infinitely random selections from the same finite
population, not to an actual result in a single experiment.



Two theories

* the underlying
philosophy and the
interpretation of the
[Fisher versus N—P]
results is profoundly
different

Points
of contrast

Fisher approach

Neyman—Pearson approach

Arrangement
of hypotheses

Testing
procedure

Interpretation
of outcome

A single null hypothesis (Fisher’s
term) is formulated. This
hypothesis serves for the
conceptual interpretation of
experimental results (e.g., in
terms of group differences) and
the mathematical specification of
the distribution (“population”™)
under which the experimental
data are assessed.

A test of significance (Fisher's termy)
is applied to evaluate the
discrepancy hetween the observed
data and the null hypothesis. If
the probability of the data under
the hypothesis, D], is
sufficiently small (e.g., p< .05),
the hypothesis is rejected. If

P DIH) is not small enough, the
hypothesis is not rejected (but
also not accepted).

Fisher proposed that the outcome
of a successful test of significance
can be interpreted in terms of the
following disjunction: Either the
null hypothesis is false, or an
unlikely event has occurred. If it
is concluded that the hypothesis
is false, the corresponding
substantive interpretation is that
the experiment has demonstrated
a positive result (e.g., a difference
between groups). Fisher's
interpretation of nonsignificant
outcomes is ambiguous.

A dichotomous decision-making
situation is postulated in which
the preferred course of action is
contingent on the (unknown)
distribution of an ohserved
ariable. Two alternative
hypotheses (Neyman and
Pearson’s term) are formulated
in correspondence with the
actions.

A test of statistical hypotheses or
ruele of inductive behavior
(Nevman's term) is applied o
one of the hypotheses. If P{DIH]
is sufficiently small (i.e., <o),
then the tested hypothesis is
rejected and the alternative
hypothesis is accepted by
implication. If DA} is > o,
then the tested hypothesis is
accepted and the alternative
rejected.

Neyman and Pearson did not in-
terpret the outcome of a test
epistemically but in terms of the
relative frequency of errors in
the long term, or Type I error (o)
and Type IT error (1 = ), where B
designates the stalistical power of
atest (Neyman and Pearson’s
terms). The substantive inter-
pretation of the test is to adopt
one specified course of action
or the other, corresponding to
which hypothesis has been ac-
cepted (i.e., a decision).




Two theories

‘Significance test’ (R. A. Fisher) ‘Hypothesis test’ (Neyman and Pearson)

p value—a measure of the evidence against Hp a and f3 levels—provide rules to limit the proportion of decision errors

Calculated a posteriori from the observed data (random variable) Fixed values, determined a priori at some specified level

Applies to any single experiment (short run) Applies only to ongoing, identical repetitions of an experiment, not to any single
experiment (long-run)

Roots in inductive philosophy: from particular to general Roots in deductive philosophy: from general to particular

‘Inductive inference”: guidelines for interpreting strength of evidence in data 'Inductive behavior': guidelines for making decisions based on data (objective behavior)

(subjective decisions)

Based on the concept of a ‘hypothetical infinite population’ Based on a clearly defined population

Evidential, i.e., based on the evidence observed Non-evidential, i.e., based on a rule of behavior

It is often overlooked that ‘significance tests’ as well as ‘hypotheses tests’ were specifically
developed for controlled experimental settings (like in Fisher’s case agricultural research),
and not studies based on observational data. Paramount to experimental settings and
frequentist tests is randomization (i.e., random assignment and probability sampling).



Confusion: “significance level”

Table 1. Differences between p-values and « levels as measures of ‘statistical significance’.

P-values

o levels

Fisher’s significance level
Inductive philosophy — from particular to general

Only the null hypothesis, Hj

Empirical evidence against Hy
Inductive inference —framework for evaluating

strength of evidence 1n data

Data-dependent random variable with uniform
distribution over the interval [0—1] under the
null hypothesis

Characteristic of data

Power of test only implicit

Short-run — applicable to each specific study

Neyman—Pearson’s significance level
Deductive philosophy—from general to

particular
Null hypothesis, Hy, and alternative
hypothesis, Ha
Type I error—erroneous rejection of Hy
Inductive behaviour —prescriptions for making

decisions between Hpy and H4 based on data
Predetermined fixed value

Characteristic of test
Power of test plays central role
Long-run — applicable only to ongoing,

1dentical repetitions of original study, not to
each specific study

A typical misuse: ‘roving alphas’

the Type I error is a conditional
probability which can be written
as a = p(reject Hy|H,, .,.0). Itisa
pre-selected fixed measure that
applies only to infinitely random
selections from the same finite
population, and not to an actual
result in a single experiment.

p values are conditional
probabilities of the data, so they
do not apply to any specific
decision to reject H, because
any particular decision to do so
is either right or wrong (the
probability is either 1 or 0). Only
with sufficient replication could
one determine whether a
decision to reject H, in a
particular study was correct.



Debate

* Neyman—Pearson’s model is considered to be theoretically consistent and
is generally accepted as ‘frequentist orthodoxy’ in mathematical statistics.
However, the emphasis upon decision rules with stated error rates in
infinitely repeated trials may be applicable to quality control in industrial
settings, but seems less relevant to assessment of scientific hypotheses

(Fisher, 1955).

* On the other hand, the supposed ‘objective’ evidential nature of p values
was also questioned early on, especially the fact that p values only test one
hypothesis and are based on tail area probabilities was early on considered
a serious deficiency (Jeffreys, 1961).

* Dependence on tail area probabilities means that the calculation of p values is not
only based on the observed results but also on ‘more extreme results’, i.e., results
that have not occurred.

* ‘stopping rule’ paradox: what is ‘more extreme results’ depends on the actual
sampling plan in a study



ASA Statement on p-values (2016)

1. P-values can indicate how incompatible the data are with a specified statistical
model.

2. P-values do not measure the probability that the studied hypothesis is true, or

the probability that the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only
on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the

importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a

model or hypothesis.



Multiple test burden

e Multiple test: family-wise error rate (FWER) — the probability of at
least one type | error

a=1— (1 - ﬂ:{per ci_ﬁmpal‘iﬁﬂﬂ})m'

® BOO I e ! S in eq ua I ity Null hypothesis is true (Hg) | Alternative hypothesis is true (Hy) =~ Total

Test is declared significant V S R
e8] oo
P U Aﬁ' < E : [F}(At-). Test is declared non-significant U Tr m—R
i=1 i=1 Total my m — mg m

« 1 is the total number hypotheses tested
® BO nfe rronl co rreCt|O N « g is the number of true null hypotheses, an unknown parameter
« m — my is the number of true alternative hypotheses
&{per cclmpal‘isml} — ﬂ[fﬂl- e Vis the number of false positives (Type | error) (also called "false discoveries”)
« S'is the number of true positives (also called "true discoveries”)

* False discovery rate (FDR) oo o s ! =
FDR = E(V/R)

« R =V + §is the number of rejected null hypotheses (also called "discoveries”, either true or false)



The distribution of P-values

. Hp is true = H; is false
* P-values are random variables F 1M Ml 21
* Under null hypothesis: uniform F 8- : 8
distribution U(0,1) £ E o
consider a left-sided one- P = Fr(T) T T T T T B
0.0 02 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0
tailed hypothesis test, P = Fr(tobs) e e
Fp(p) = Pr(P < p)
Fr(t) is the cumulative — Pr(Fr(T) < p) T
distribution function of — Px(T < F; (p)) . PV
the test statistic under &
the null hypothesis. = Fr(Fr " (p) % 2
=p £ g
* 3 TR

* When Hj is false: a good T will tend to LT
be |arger under Hl’ SO p W|” be Sma”er 00 02 04 06 08 10

p-value



Benjamini-Hochberg

e ¥tp-value WINBIKFEITF P J5, &ERIL ML v, < L— B’J,mz e
FDRIBE, M o fa e vk \
Ho HER, plEBRMIO1L]ES5%,

Myh MgalL M, My "NHo AERIRRLYS, SE7E[0, ]
FDR = == < 5= = 37 S wopmmwmnMon, DEERELA
pEHR/NIRKRIE, N E’]E—j(P'TE

Ah=pL, J”'th_;t_l_—

2
Benjamini-Hochberg Method )
L=
To control FDR < a: “
1 . h 24 E oy l‘.
1. Let py) < -+ < p(ar) be ordered p-values. I WM { o /
2. Define L = max {j : p(j) < aj/M}. h - s
3. Reject all hypotheses Hy; for which p; < p(p;. - =% :
L M =

0 200 400 600 8OO 1200



Storey g values

* the g-value in the Storey-Tibshirani procedure
provides a means to control the positive false
discovery rate (pFDR).

FDR = E(V/R | R>0)P(R>0) pFDR = E(V/R | R > 0)

* The g-value is defined as the minimum pFDR at
which the feature can be called significant.

Large m: P(R > 0) ~ 1, pFDR ~ FDR =~ %

sigilfE NtH: E[R] = #{p; < t}; E[V] = myt = mmyt

i — o #ip,=Ni=1,...,m M RIZR T Al)p
Estimate Ty = — fro(N) = —2 TR A
ot | 5 96 02 Ho Ji 5T
N " f— M " pa M ) \ A
f 1=p;

(b)

TN

p-values

]
0.0 0.2 0.4 0.6

Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk ef al.
(14) data. The dashed line is the density histogram we would expect if all genes
were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.



Notes

e MAF threshold: {lMAF<=4 hi4Ez PH 4 X6

e trans-QTL: B & & i Hlartefacts

* Sequence similarity between a cis-QTL feature and another feature in trans
(mis-mapping of reads)
* More smaller and more cell type-specific effects than cis-QTLs

e Effect size estimation
* Slope, SVE, allelic fold change (aFC)E%%E&ﬁeVariant%ﬁ%

s 2 Aty
log2]

e Sample size

LA

A

(R R IRt

M) RIZEZBPIXNT L (log-ratio) , BN

* Horizontal pleiotropy, haplotypic effect: variants in LD for cis-QTL



Software

* MatrixeQTL
* FastQTL

* QTLtools

* TensorQTL



Visualization
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Fine-mapping

* Fine-mapping

 Allelic heterogeneity: multiple LD-
independent molQTLs in the same genomic
region affect the same molecular feature.

e Methods:

* |terative conditioning: forward selection

e Posterior inclusion probabilities &
credible sets of variants: CAVIAR, DAP-G,

FINEMAP, SuSIE

-log,,(Pvalue) -log, (P value) -log, (P value) a.

PIP

[y
o
|
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0.3 -

Standard eQTL
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Colocalization

* Genetic colocalization: The o
phenomenon whereby genetic
factors at a particular locus are
shared between two or more traits

Significant
associations

-lo g, ﬂ{F value)

Putatively
causal variants

 Tests for genetic colocalization try to
separate between two scenarios: (i)
there is a causal variant for trait A
that is distinct from the causal
variant for trait B, whilst being at the
same locus, and (ii) the causal variant
for trait A and trait B are shared.

-lﬂgl “{F value)

Chr position



Colocalization

The idea behind the ABF analysis is that the association of each trait with SNPs in a region may be summarised by a vector of 0s and at most
a single 1, with the 1 indicating the causal SNP (so, assuming a single causal SNP for each trait). The posterior probability of each possible
configuration can be calculated and so, crucially, can the posterior probabilities that the traits share their configurations. This allows us to

estimate the support for the following cases:

» Hj: neither trait has a genetic association in the region
e Hj:onlytrait 1 has a genetic association in the region
e Hy: only trait 2 has a genetic association in the region

e Hj: both traits are associated, but with different causal variants
e H,: both traits are associated and share a single causal variant

GWAS_summary_statistics.csv

oo Loese v s [ ooe [ o oem |56 |

rsl 04 0.02 10000 05 0.2 cc sl 03 0.03 1000 0.05
rs2 0.1 001 10000 0S5 0.1 cc rs2 0.1 0.01 1000 0.05
rs1000 0.2 001 10000 0S5 0.1 o rs1000 0.4 0.02 1000 0.05

1 l

Coloc.abf (GWAS_ summary statistics.csv,
eQTL_summary statistics.csv)

Output: l

PP.HO: 3e-7
PP.H1: 8e-6
PP.H2: 3e-5
PP.H3: 7e-5
PP.H4: 9e-1

eQTL_summary_statistics.csv

quant
quant

quant

-log10(p)

-log10(p)

~log10(p)
]
L

—
o
1

[4
o
1

o
1

H1 (or H2) eQTL: 00010000
biom: 00000000

!

genomic position

104

H3 eQTL: 00010000
biom: 00000010

}

genomic position

10+

Ha eQTL: 00010000
biom: 00010000

}

genomic position

Datasets
—+|eQTL
- biomarker



Colocalization
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Colocalization in coloc

 configuration: one possible combination of pairs of binary vectors
indicating whether the variant is associated with the selected trait.

* We can group the configurations into five sets, Sy, 51, 5S>, 53, S4,
containing assignments of all SNPs Q to the functional role
corresponding to the five hypothesis Hy, H{, H,, H;, H,.

PP4 Approximate Bayes factor (ABF)

Z'E
P(H)|D)= S P(DIS)P(S) — P(H,|D) ABF=vT—rxexp [T x,-]
'S'IE'S',I'] - -P[:H4|D]| Y, 7
= P(H,|D)+ P(H,|D)+ P(H>|D) + P(Hs| D)+ P(Hs| D) Z=p/NV
P(Hj| D) _ Z P(D|S) " P(S) P(Hs|D) r=W/V+W)
P(Hy|D)y & P(D[Sy) P(Sy) P(H,|D)

-SESh =

_ P(H\|D) | P(Hy|D) _P(H3|D)  P(Hs|D)
Bayes factor (BF) " P(Hy|D) = P(Hy|D) P(Hy|D)  P(Hy|D)




prior

* pO Is the prior probability that a SNP is not associated with either trait,
pl is defined as the prior probability that the SNP is only associated
with trait 1, p2 the prior probability that the SNP is associated only
with trait 2, while p12 is the prior probability that the SNP Is
associated with both traits

P(Hy|D) _ 4
P(Ho|D)
P(S) _ pg _ | P(H,|D) Q 1
o If S € Sy, then P(S) = p§ o £ S € 5o, then 555 = b =1 PUHID) = P1 X Xj=1 ABE;
P g p[-”QlD) Q 2
e If § €S, then P(q) p{} ><;O1 o If S €5, thnp[ —”—-‘;—x;p _P—-:cp P(Ho|D) — XZ ABF
P(Hz|D) _
o If S € S,, then P(S) = pf,?’ L % pa o If S € Sy, then HE _u.j_ xpa =~y P(HaID) = P1 % P2 X 3j 1 jxx ABF; ABF
P(H,|D) _ Q
= p1a x 37| ABF} x ABF?
o If S € 53, then P(S) = p{, 2% p1 X pa2 e IfS € S5 then P[L?‘ ><p Xpr= I x B xpy X py P(Ho|D)
o If S € 5,, then P(S 2?1 X e
€ o4 (S)=p5 ™" xpr2 o If S € Sy, then £5) = JL-‘;—Xp B2 & py,

Q Q
P(H;3 | D) 1 2 [Pl xpy P(Hy|D)
=p; X pa X ABF; ABF: — X

P1 X P2 JZ:; i JZ:; J 1o P(Hu | D)




ABF

under the null we assume that the effect size B = 0. Under

the alternative, B is normally distributed with mean 0 and
variance W

* phenotype-genotype v -, +3x

e asymptotically A
B - N(B,V). [g}mx([;][g o )

I 3 - * 1
=t 223 A vy [T 0 17"
Ly glTor\ B 0T Igp |

* BF

P(H;|D) _ 5 P(D|S)  P(S) £8) E=ﬁ.r'- v
P(HoD) ~ & P(D|S))  P(S) BF — [ FB) et wrr e o[22 |
S5y 1 f(“) (B)d ABF = /1 —r x exp 5 X N f{V—I— W)
Bayes factor (BF) !

the relative contributions of the prior (W)
and likelihood (V) to the inference.



trait 1 Prior probabilities
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o
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sensitivity analysis ¢ Com| | |01k 4
o 0.02 @ H3 &
O Ha
0.01
0.00
1e-08 1e-07 1e-06 1e-05 1e-04
Chromosome position p12
trait 2 Posterior probabilities
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=] in
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Specifying prior values for coloc.abf() is important, as results can be dependent on these values. Defaults of p; = ps = 104 seem justified
in a wide range of scenarios, because these broadly correspond to a 99% belief that there is true association when we see p << 5 X 10~ % in
a GWAS. However, choice of pyg is more difficult. We hope the coloc explorer app will be helpful in exploring what various choices mean, at

a per-SNP and per-hypothesis level. However, having conducted an enumeration-based coloc analysis, it is still helpful to check that any
inference about colocalisation is robust to variations in prior values specified.

A sensitivity analysis can be used, post-hoc, to determine the range of prior probabilities for which a conclusion is still supported. The

sensitivity() function shows this for variable pj9 in the bottom right plot, along with the prior probabilities of each hypothesis, which may
help decide whether a particular range of p12 is valid. The green region shows the region - the set of values of p12 - for which Hy > 0.5 -
the rule that was specified. In this case, the conclusion of colocalisation looks guite robust. On the left (optionally) the input data are also

presented, with shading to indicate the posterior probabilities that a SNP is causal if Hy were true. This can be useful to indicate serious
discrepancies also.



Colocalization: SuSiE

* coloc has adopted the SuSIE framework for fine mapping in the presence of multiple
causal variants. This framework requires the LD matrix is known, so first check our
datasets hold an LD matrix of the right format. =check_dataset= should return NULL
if there are no problems, or print informative error messages if there are.

* fine-mapping: variable selection
y=Xb+e, PIP; == Pr{b; #£ 0| X, ).

* Sum of Single Effects (SuSiE) model posterior inclusion probability (PIP)

b= ib;,

=1

each vector bl is a “single effect” vector; that is, a vector with exactly one non-zero element.
L=1: “single effect regression” (SER) model

L>1: Iterative Bayesian Stepwise Selection (IBSS)


https://stephenslab.github.io/susie-paper/index.html

Replication

* Simple overlap of significant variant-
feature pairs between two sets:

suboptimal i Oy P> 2i =12 m)
. . 0 -
 Difference in power B m(l— A7)
* LD contamination : [T

* 7T Statistic
* quantifies the proportion of true positives .
based on the distribution of P values :

1 — 7,

* colocalization

3000 4000

2000

* using allelic data " e



More concern

* Tissue and cell context specificity
* Population differences

* Multi-omic QTL integration

* combining fine-mapping and co-localization methods to identify shared
signals, followed by mediation analysis to identify causal relationships.

* GWAS integration

* GWAS co-localization analyses: assess whether the association signal for two
traits in a given genomic region is driven by shared or distinct causal variants.

* Transcriptome-wide association studies (TWAS)
* Dynamic, spatial patterns



More analysis

Questions

Identification of functional variants

AGCTCGGCTTAACGCCEEEETACCTAGATCGETATG
AGCTCGGCTCAACGCCEEEETACCTAGATCGATATG
AGCTCGGCTTAACGCCGOGETACC--GATCGATATG

AGTCGGETCAROGCCGEEETACCTAGATCGATATE

Epigenomic effects of variants
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Acrcscmcmsccccﬁsmccmﬁmm

Target genes in the locus
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Pathway effects
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Potential solutions to challenges

molQTL mapping

* More diverse ancestries to
break down LD
* Larger sample size

* Epigenomic OTLs
= Cell type/state resolution

= Cell type/state resolution

* Large sample sizes for weaker
enhancer effects

* Diverse transcriptome
phenotypes

» Larger sample sizes for
trans-eQJTL mapping (with cell
type resolution)

= GWAS for cellular and tissue

phenotypes

Other approaches

* MPRA
= CRISPR base editing

* Epigenomic assays (ATAC, TF
binding, etc.)
* Predictive models

= Hi-C for enhancer—promoter
looping

= CRISPRI

= Predictive models

* Perturb-seq
* Pathway enrichments

Relevant cell type and state

- -

£ N Y
B Bl

b &

* Comprehensive molOTL data at

cell type/state resolution

* Enhancer activity maps across
cell types/states



eQTL with single-cell data




eQTL with single-cell data
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QTL with single-cell genomics

* pseudo-bulk data: aggregated
expression of each gene in each
cluster or cell type with genotypes
of individuals at nearby variants

* single-cell resolution: cell type & cell
state
* sparsity & non-normality: Poisson,
negative binomial, multinomial
* scalability: quality of cells, consistency

of outputs, memory and computation
(parallelizing, sparse matrices)

T
44

T T T
48 52 56

SRGAP2 expression (bulk)

|
6.0

T T T T
0 50 100 150

SRGAPZ expression (single cell)



Cell type-
Raw RNA- Expression cellQC Cell type specific. Tl
seq reads quantification (gene QC) annotation QC-ed

Cell-type specific eQTL

b. Aggregation & Normalization

B (ooew)
....... g Iib;ize g
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libSize
orrection

 Single-cell data: Cell-type annotation =h — = —
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/IE%J‘TEI‘J “AMR” (%%éi}ﬁbulkﬁ\@%/%%?ﬁﬂﬂ@ {ie H N
PRAEILE RS o P AThREeQTLITI: _ %}
* Treat a single-cell as an individual sample: & &% Il R Rl e
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d. Multiple testing correction

» cellRegMap
- gene-level gene-level correction globally
S correction —> adjusted — across genes [ adjusted
R ) . . p-values % -val
yﬂgi. - ﬁg + ISQ‘S :t?.ns _|_ 3‘?’31:\3?1’5 —|_ ’H,ﬂ_g —I— C??g't —|— E-nm, across SNPs p-values Y p-values

BH, Storey, cFDR




From cell type-specific to dynamic eQTL

Cell type—-specific eQTL analyses » Dynamic eQTL analysis p

/ oo

. ) > L ¥ ///;
'Y oo & o &
scRNA-seq .'.: 0:. e - o ‘:}“::0’ 4
° L%
S s .:o.' Pseudotime (trajectory) RNA velocity “‘.!
> &
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Gene regulatory network analysis
Cell type—-specific network inference
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Trans-eQTL Df/)\,o
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AAAAA
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M\ AAAAA Cell type X

Cell type Y

Stimulation-responsive eQTL B Cell type—-specific eQTL O Disease-specific eQTL



From single-cell eQTL to more molQTLs

Table 1 | Representative human tissue profiling resources

Database No. of tissues/ Profiling method Clinical Refs
samples/donors state
mRNA
GTEx 51 (+2 CL)/~11,500/~700 RNA-seq Normal H
HPA 44/122/122 RNA-seq Normal 1
Protein
HPA 32/122/122 IHC Normal and 1
diseased
Human Proteome Map 30/85/3 Mass spectrometry Normal
Non-coding RNAs
TissueAtlas (microRNAs) 61/61/2 Microarray Normal =L
DASHR 86 (+51 PC, 48 CL)/>800/NR  Data integration Normal =2
FANTOMS (microRNAs, IncRNAs,  400/150(+570PC,250CL)/3  Various Normal ESE
promoters, enhancers)
Regulatory elements
GTEx (eQTLs) 48/~10,000/~600 eQTLs Normal i
ENCODE and Roadmap >120/NR/hundreds ChlIP-seq, DNase-seq, Normal 222
Epigenomics ATAC-seq, FAIRE-seq
3D Genome 109/113/NR Hi-C, ChlA-PET, Normal e
Capture Hi-C, PLAC-seq
TiGER 30 tissues Data integration Normal >
Single cells expression profiles
Human Cell Atlas 3/17/17 scRNA-seq Normal and 10
diseased
Single Cell Portal 68 studies scRNA-seq Normal and

diseased



LLimitation

* Donor selection and sample size
* “environment”: lifestyle, demographics, other biomedical traits, etc.
e ancestry
* disease-relevant

* Biospecimen selection and resolution

* Molecular read-outs

* many classes of mMRNA and non-coding RNA lacking a polyA tail or subject to
rapid degradation

* Rare variants
* LD contamination and pleiotropy (co-expression)
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