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Mendelian randomization

* [V1: associated with the exposure
X (the ‘relevance’ assumption);

* IV2: independent of the outcome
Y given the exposure X (the
‘exclusion restriction’);

* [V3: independent of all (observed
or unobserved) confounders of X
and Y, as represented by U (the
‘exchangeability’ assumption)

v

Model
Y:ﬁo‘l‘ﬁX‘l‘U‘l‘Vy
X=mg+7nG+U-+v,

Summary data

Individual-level data
Y = FO + FJG] + Ey’j

X = Ty + T[]G] + Ex,j




Controversy for time-varying exposures

30 -

* A usual interpretation of MR
results for time-varying
exposures: “lifetime effect”
— but lacks clarify

* The G-X relationship varies
with age: FTO (fat mass and sy | | |
obesity-associated gene)- = R s &
BMI . Solid: AA

« Short-dashed: AT
 Long-dashed: TT
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Lifetime effect "

* Time-fixed exposure \
a+1 a
E|v&* — E[v4] .

* Time-varying exposure

}I

E[&*] - E[v¢] 3 !
The effect of shifting the &
entire exposure trajectory
(A) by 1unitonY at time k. G//—T;\ Ak — Y,
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Example

_ Par
Bar =7~

Time-point IV estimate

NXUFTNXGXEXGETHXY

MRy =
T
Yo
=1t ”fs[‘h + __]
i
MR, = NXYFN XX s+ XTYs

hxXh+h

=?(—T )+ ¥s-

Hh XY+ 71

if the genetic effect is constant over time
Y1 =71 XV3+ V2

T2 ¥
MR = L - R, = (2 .
0= T4+T5[ " + h] MR, (ﬂ,l)k"r4+'rd

=Y + 1. — T4 7T 75

The IV estimate using either time point could potentially be
a valid estimate of the lifetime effect of A on Y when the
relationship between G and A is constant through time.
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Genetic scenario G-A

SlIIlUlathIlS Exposure constant FTO-like increase decrease
W|nd0W N 1.0 4 % 1.0 - 9 1.0 2 1.0 -
* Solid line: G-A association uniform  ges| " gos) /N e BN
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* Dotted line: A-Y association

k
E[Yf] = 0 +/ ’}A(t)ﬂ,:dt
0

K
ElYF~ -y~ = /0 v4(t)(Bo + Be + Br *t + Ber * t)dt — /0

K

k
- /0 va(t)(Ba + Bar * t)dt

EYS —vo=% [P ya(t)(Bc + Ber * t)dt

E[AT=T — 4970 ~ Be + Bar * k
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e Estimation time: at 30 and 50
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Table1. Results From the 16 Hypothetical Scenarios Described in Figure 4, Comparing the True Lifetime Effect of Exposure on the Outcome

Re S l l 1t S With a Mendelian Randomization Estimate When the Instrument Strength Varies Over Time

Age at Which Exposure |s Measured

Exposure Window® Age 30 Years Age 50 Years
True MR Absolute Relative Bias, True MR Absolute Relative Bias,
Etffect Estimate Bias %o Effect Estimate Bias %o
] T h e u n b i a S e d Constant genetic scenario
. Uniform® 1.2 1.2 0.0 0 2.0 2.0 0.0 0
estimates Recent® 2.0 2.0 0.0 0 2.0 2.0 0.0 0
. Critical® 2.0 2.0 0.0 0 2.0 2.0 0.0 0
When there IS Increasing® 0.7 0.7 0.0 0 2.0 2.0 0.0 0
Increasing genetic scenario

a ConSta nt Uniform 1.2 1.0 -0.2 -18 2.0 1.5 -0.5 —25
. Recent 2.0 1.8 -0.2 -10 2.0 1.8 -0.2 -8
ge n et I C Critical 2.0 1.6 —0.4 =20 2.0 1.3 -0.7 —36
. ( G X) Increasing 0.7 0.6 —-0.1 -12 2.0 1.7 -0.3 -16

S Ce n a rl O - Decreasing genetic

scenario
Uniform 1.2 1.5 0.3 22 2.0 3.0 1.0 50
Recent 2.0 2.2 0.2 1 2.0 2.3 0.3 16
Critical 2.0 2.5 0.5 23 2.0 3.4 1.4 72
Increasing 0.7 0.8 0.1 14 2.0 2.7 0.7 34
FTO genetic scenario

Uniform 1.2 0.9 -0.3 -22 2.0 3.7 1.7 85
Recent 2.0 2.0 0.0 -2 2.0 2.9 0.9 46
Critical 2.0 1.5 -0.5 —24 2.0 3.9 1.9 95

Increasing 07 0.7 -0 -8 2.0 3.7 1.7
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Another interpretation: liahility effect

* We are not estimating the causal effect of an exposure as it manifests
at a given time point, but the effect of the underlying exposure
liability. That is, we assume that there is some unobserved (latent)
variable L, which is caused by the genotype G, and in turn causes the
exposure at every instance across the lifecourse.
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Example

The total effect of a one-unit change in Xg on Y (fiy ) is
given by:

Fry =74 + V576

The total effect of a one-unit change in Xi on Y is given
by:

Fr, =7

The liability effect is the causal effect of a one-unit in-

erease in liability, which is given by:
I =rave + 12757 + ol

Turning to the liability effect ar dme 0, ;| (the effect of
increasing the |iahilit}r such that Xg increases in expicta-
tion by one unit), a one-unit ncrease in E{Xy) occurs be-
cause there i1s an increase in L from fjgmo L = [ 4+ ﬁ

L = la, then:

E(Y|dollia)) = voo = halyays + 72vsve + Vavs)

L=y +ﬁ, then:

((wloss)

1
= |l +:)['.-'1'.—'4 + avsve + ¥3vs)

- ;\: A )
/"/’5)\:@)@?
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The effect on ¥ of L']'Langing the Jiahi]it}' L such that it

raises X by one unit is therefore given by:

(¥ava + T2ys¥e + v376)
72

(1

P, = %0 =Y =

A one-unit increase in expectation in Xy would occur
becaose there is an increase in L from [y to f +m
If I. = ly; then

E(Y|doll11)) = ya1 = ha(v27s + Tafsve + T17e)

IfL =1y + —L— then

(raTetts)
Ef [ vido[ e+ ——) )=
" (1275 + 713) =
1
= f +—_— Y3V + PV Te + T ¥
T s +13) (124 + 72isTe + T3¥e)

The effect on ¥ of changing L such that X is increased
by one unit in expectation is given by:
_ [rava +7a¥ste + ¥as)

Fr, =y =y = (2}
L =Y Y T2¥s + 73

=G4+ U4 g

Mo =y L 4 apll 4 5

Xi=nL4+y:Xpg+o U4 g

Y =y.X1 + 14 X0 +aylU+ ey

-
-
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Example

* MR estimates the
causal effect of a
change in liability
L that results in an
expected one-unit
change in
exposure X;

SHANGHAI JIAO TONG UNIVERSITY

The effect of G on Y is:
Boy = 1(¥27a + 12¥s576 + 7376) (3)
The effect of G on Xy is
Bax, =N (4)
The effect of G on Xy is
Bax, = valrara + 1275 + 717s) (5}

The Wald Ratio MR estimand with X as a single expo-
sure is given by Equation (3/Equation (4):

o = 1 (vava + v2¥sve + Vave) _ (1a7a + Ya¥she + Va¥e)
ke Plrz) (y2)

(6)
The Wald Ratio MR estimand with Xy as a single
exposure is given by Equation (3)/Equation (5):

fi _ TulVava + Fa¥s¥e + Va¥s) _ (V2Fa + Val¥s¥s + Va¥e)
ME, — T o - - -
(Fals +73) (Y275 +73)

(7]

G

r;

—_—

L=3,G4+oU+g
Xo=7L 4+ mpl + 5
Xi=nl+1:Xo+ U485

Y=9.Xy 4+ 7y, KXo+ oyl + ey

Y/Xo *
i ¥s Y
}Xl /KS'
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Methods for time-varying MR

* Multivariable MR (MVMR)

* G-estimation of structural nested mean model (SNMM)
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Methods for time-varying MR

e Multivariable MR (MVMR)

* G-estimation of structural nested mean model (SNMM)
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MVMR

* MVMR is proposed to cope with the
horizontal pleiotropy.

* Assumptions:

e the variant is associated with 1 or
more of the risk factors,

e the variant is not associated with a
confounder of any of the risk factor—
outcome associations,

* the variant is conditionally
independent of the outcome given all
of the risk factors and confounders.

A) B)
G<| \ U1 G1 U1
/ /
B S
2/ X2 - / 2/ X2 '\//"
G3 U2 Gg U2

s



MVMR

U
* Individual-level / \
> X > 7

Y:ﬁ()‘l‘Ble‘l‘ﬁzXZ‘l‘U‘l‘Vy

X1:7T01+7T1G+U+Vx1

X
X2=7T02+7T2G+U+Vx2 ?
it is necessary to have at least as many
e Summary genetic instruments as there are

exposures to be instrumented in the
model

[} = B17T,j + Bafiy; + €
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Simulations

/ \ R e Simulated data generation mechanism
g‘ et T Models (4) (6) (8)
12 ™~
G - X, / Y=8+5X1+6Xs+U+uv,. (4)
/U\ X1=m0+mG+U+vy, (5)
G i > Scenario 2: Collider Xl = M2 + REG + U+ Ux,- {6}
1 / .f‘ 1 / )
GIZ \ l /// R Xl = ﬂlG + :IEXE + U + Uy - {8]
G: ‘Xz “ U
/ \ X;=IE1G—|—C¢E1X1—I—}‘}.Y+ U+Ux3- (9)
Gl X Y Scenario 3: Pleiotropy .
G /' Models (4) (5) (6) X2 =mG+ouXi+U+vy. (10)
\ >
G, X,
U
G, = 1'// \;y Scenario 4: Mediation
/ o
Gy l/ Models (4) (5) (10)
G, \ X, /

) it an
B | VZe B, “
3 2 R S‘H/MGHA]jIAOTD‘;}:}-—UNIVERS?":Y M\JT 1




Simulations

* With single-sample individual-level data, implemented:

e OLS, both for X1 and X2 individually (i.e. univariable regressions) and together (i.e. a
multivariable regression);

* MR for X1 and X2 individually, each time using all the available SNPs as instruments;
e MVMR including both X1 and X2 in the same analysis;

* MR for X1 and X2 individually using only the SNPs that are valid instruments for that
exposure (G1 and G2, respectively).

e With two-sample summary-level data, implemented:

MR for X1 and X2 individually using all of the instruments available;
* MVMR including both X1 and X2;

* MR for X1 and X2 individually using only the SNPs that are valid instruments for the
exposure.

>~ v A
e o a :
= AR S
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Results

* In general, MR estimates the total effect of the exposure on the
outcome, whereas MVMR estimates the direct effect of each exposure

on the outcome.

U

B

_——'Y

B2

Table 1. Summary of estimated effects for f,

Scenario/which estimand is targeted?

Method I 2 3 4
Individual-level data

OLS X X X b
Univariate MR x Direct/total x X
MVMR Direct/total Direct/total Direct/total Direct
Univariate MR—subset of SNPS Direct/total Direct/total Direct/total Total
Two-sample summary data analysis

Univariate MR X Direct/total % X
MVMR Direct/total Direct/total Direct/total Direct
Univariate MR—subset of SNPS Direct/total Direct/total Direct/total Total

When each method of estimation estimates the direct and total effects for fi; in each of the scenarios considered.

An °x” represents a biased method of estimation.

/}f.‘

v
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Summary for MR vs.. MVMR

Table 1. Results for the effect of exposure X; on outcome Y*

MR—including all MR—including SNPs
Relationship between X; and X, SNPs that only affect X, MVMR
Confounder Biased—assumption Direct effect = Direct effect =
1V2 is violated total effect = 3, total effect = g,
X B
SNPs Y
B
X, ?
Collider Direct/total effect=/, Direct effect= Direct effect =
total effect =, total effect =,
X1 &
SNPs / Y
X
Mediator Biased—assumption Total effect =5, + o3 Direct effect = §,
1V2 is violated
X1 &‘
SNPs a Y
B

*Obtained from Mendelian randomization (MR) and multivariable MR (MVMR) under different relationships between
exposures in a two-exposure model.

MJTﬁ



» X, is regressed on the full set of genetic instruments (and
any control variables included in the estimation) and the
Test fO]:' aS SumptiOnS predicted value of X, }2;, is calculated;
» X, is then regressed on X, (and any control variables) to
yield the TSLS estimate & and the residual error terms
X, — 0X; are saved;

° I N d |V|d ua I_Ievel data * the errors are then regressed on the ful‘l ‘set of instru‘mfamdrs

(and any control variables); the conditional F-statistic is

* Instrument Strength: Sanderson— obtained as the F-statistic for the effect of the instru-
Windmeijer conditional F-statistic ments in this regression;

* the conditional F-statistic must be adjusted for a degrees-
of-freedom correction, and can be compared with the
conventional weak-instrument critical values.*

* regress the outcome Y on the exposures using TSLS to
yield causal estimates 8, and f8,;

* calculate the residual error term Y — (B, X; + $,X5) and
then regress the residuals on the full set of instruments;

* Instrument validity: Sargan test

the Sargan test is then the sample size times the R? of this
regression;

. . .. . -

» evaluating with the Sargan statistic with respect to a -

distribution with degrees of freedom equal to the number

of instruments minus the number of predicted exposure

variables (i.e. the null hypothesis that all of the instru-

ments are valid).? T i 1



Test for assumptions

 Summary data

* instrument strength: heterogeneity is ‘good’

* the model will be at least exactly identified when there will be at
least as many independent genetic instruments as there are .
exposure variables to be instrumented. we can test for under- 0., (;) (ﬁ” ~ 5:‘1;;)2.
identification in our estimation model by testing for over- =1 \%x
identification using the Sargan test as described above.

* instrument validity: heterogeneity is ‘bad’

 if all instruments are valid 1Vs, and the modelling assumptions L 71\ /. /. ) 2
necessary for two-sample MR are satisfied, then each genetic =~ 4~ 2 (a) (r,- N (ﬁ'ﬁ” + ﬁzﬁzr’)) '
instrument should give the same estimate of the effect of the
exposure on the outcome. Excessive heterogeneity in the causal-
effect estimates obtained by each SNP individually now becomes
an indicator of invalid instruments.

sl



Application: mediation analysis

[ I I l Table 2. Estimation of total, direct, and indirect effects and proportion mediated using Mendelian randomization
M ed | at 10N ana Iys 1S (MR) and multivariable MR (MVMR) PP i
b D Iffe rence met h Od Estimation—product of coefficients method
Effect Estimation—difference method (network/two-step MR)
° P rOd u Ct Of Total Univariable MR of exposure on Bi Univariable MR of exposure on B
CoefﬁC'e nt sSm eth Od effect outcome using single-nucleotide outcome using SNPs associated
polymorphisms (SNPs) associated with exposure only (Fig. 3A)
U with exposure only (Fig. 3A)
\ Direct Effect of exposure on outcome from f; Total effect—indirect effect B — ap,
effect MVMR including exposure and
‘/ mediator as exposures (Fig. 3B)
Bl Indirect  Total effect—direct effect B} — B, Effect of exposure on mediator from af;
(G —p Xl amm— 4 effect univariable MR (Fig. 3C)

multiplied by effect of mediator

on the outcome from univariable
MR (Fig. 3D) or MVMR (Fig. 3B)

P2

.\ ‘ ‘ﬁ .
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MVMR for mediation analysis

L 4
b4
h 4
-

* Advantages: a [swes, a
* |f M is not a mediator of X and
Y but is in fact a confounder (or B [ sns, a v
even collider) of X and Y, the
estimated direct effect will be | /
equal to the estimated total o Y

effect and so the lack of
mediation will be clear from the Cc [ snps,

Y
>
Y

» X > M
results obtained.
* Tolerant for pleiotropy and D [swes, iy P [y
Confou nders Of M a nd Y Figure 3. Illustration of the parameters estimated to obtain total, direct, and indirect effects and proportion

mediated using Mendelian randomization (MR) and multivariable MR (MVMR). (X) exposure, (M) mediator,
(Y') outcome, (SNPsy) set of single-nucleotide polymorphisms associated with the exposure, (SNPs,) set of
SNPs associated with the mediator.

APl x A4 )W P
: ?é e ‘rﬂx;" o Falat
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MVMR for time-varying exposures

* MVMR with multiple measures of a
time-varying exposure estimates the
direct effect of the liability to exposure
at a particular period, i.e. the effect of
the liability to the exposure at a time
point that is not mediated by other time
points included in the estimation.

* Genetic liability: the collective effect of
all genetic variants associated with the
exposure

1

f} = pifty,j + Boftyj+u weighted by: o)

‘ . - _I ‘/"/; X» ﬁx ;j\g /*x/(H T_f—/\_y Pl
a"q,“i:;v\ SHANGHAI JIAO TONG UNIVERSITY 4//\\\\' \\ - M 5\JT I




Assumptions

a) liability to each exposure is robustly predicted by the genetic
variants conditional on the other exposures included in the
estimation,

b) there is no confounding of the genetic variants and the outcome,

c) the genetic variants are not associated with the outcome other
than via liabilities to exposures included in the estimation, i.e. there
are no horizontal pleiotropic effects of the genetic variants on the
outcome via other phenotypes.

> Ay 2 4 bﬁ
= 2 et N\ T
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Simulations

* In (a) X; and X, are associated with different liabilities.
* In (b) X; and X, are associated with the same liability.

fﬁ\ﬁ%LBJTﬁ



Results

Table 1. Simulation results under different relationships between the genetic variants and the exposure at each

time point. Exposures associated with the same liability period
: | — —— MR MVMR B, Liability effect 0.530 0.200
E‘P"‘“"";I““"““"d ith ""iﬁ“’”; :::::;" ;’;"d“ — — Effect estimate 0.519 0.207
Effect estimate 0.340 0.1958 Est. Std. Error 0.011 0.080
E-st. Std. Error 0.029 0.0107 Simulation Std. Error 0.011 0.080
Simulation Std. Error 0.011 0.0106 Absolute bias 0.013 0.063
Absolute bias 0.010 0.0092 Coverage 82% 94%
Coverage 100% 93% F-statistic 96.31
F-statistic 96.31 Conditional F-statistic 1.06
Conditional F-statistic 55.76 No. SNPs 72 86
No. SNPs 72 114 B Liability effect 0.480 0.300
L2 Liability effect 0.376 9.300 Effect estimate 0.474 0.288
Effect estimate 0.371 0.297 Est. Std. Error 0,008 0,073
Est. Std. Error 0.015 0.009
Simulation Std. Error 0.008 0.009 Stmulation Std. Brror 0.009 0.072
Absolute bias 0.008 0.008 Absolute bias 0.009 0.058
Coverage 99% 94% Coverage 89% 94%
F-statistic 129.31 F-statistic 115.76
Conditional F-statistic 78.01 Conditional F-statistic 1.06
No. SNPs 83 114 No. SNPs 83 86

o re=raruL




Results

* The univariable estimates give an estimate of the total effect of a
liability that is associated with having a unit higher level of the
exposure at the time point associated with the measured exposure.

* When the measured exposures are associated with different liabilities,
MVMR consistently estimates the genetically predicted causal effect
of being on a trajectory associated with a unit higher level of that
exposure, given the liability to the exposure at the other time period.

* When the measured exposures are associated with the same liability
there is no difference in the genetic effects on the measured
exposures and therefore weak instrument bias is introduced into the
MVMR estimation.

-
) e
) vz R " [ 1
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Scenario Y — X,

* A causal effect from the outcome to the later time point

* Simulation results without Steiger filtering show that although the
genetic variants strongly predict the exposure at each time period
conditional on the other, MVMR estimation gives biased estimates of
the direct causal effect of the exposure at both time periodson Y. -
collider bias

e Steiger filtering: to remove any SNPs that explain more variation in the
outcome than the later exposure.

-
| \ [ ,/’\}rf’:\ QTJ_A- oy
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Results

Table 2. Simulation results for multiple time points with a causal effect from the outcome to the later time point.

| MR MVMR With Steiger filtering 0.200
No Steiger filtering B Liability effect 0.200 0.200
B Liability effect 0.200 0.200 Effect estimate 0.195 0.195
Effect estimate 0.196 0.078 Est. Std. Error 0.016 0.018
Est. Std. Error 0.016 0.070 Simulation Std. Error 0.016 0.018
Simulation Std. Error 0.016 0.022 Absolute bias 0.013 0.015
Absolute bias 0.013 0.122 Coverage 92% 94%
Coverage 93% 75% F-statistic 96.35
Fostatistic 96.34 Conditional F-statistic 63.68
Conditional F-statistic 59.85 No. SNPs 73 107
No. SNPs 2 17 B> Liability effect 0.076 0.000
L2 Liability effect 0.076 0.000 Effect Estimate 0.083 0.001
Effect Estimate 0.223 0.189 Est. Std. Error 0.017 0.015
Est. Std. Error 0.056 0.055 - -
Sidlation Std. Evror 0.018 0.021 Simulation Std. Error 0.013 0.015
Absolute bias 0147 0,189 Absolute bias 0.012 0.012
Coverage 206 0% Coverage 97% 94%
F-statistic 101.72 F-statistic 106.80
Conditional F-statistic 20.82 Conditional F-statistic 69.98
No. SNPs 82 117 No. SNPs 72 107

UNIVERSITY
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Three liability time periods

e Correlated genetic effects

* Independent genetic
effects

e When the association
between the genetic
variants and the excluded
liability are correlated with
those for the included

periods the effect 0.1
estimated will include vy o2
some of the effect that 7N\ YN\

acts via the omitted | Gs |—> L | » X ’
liability. N— N— —

-
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Results

Table 3. Simulation results with a relevant liability period excluded.

Independent genetic effects
| MR MVMR 3 Liability effect 0.378 0.220
Correlated genetic effects ;
Effect Estimate 0.321 0.211
B Liability effect 0.363 0.191
; Est. Std. Error 0.037 0.024
Effect estimate 0.326 0.186 - -
Ect. Std. Error 0031 0.020 Simulation Std. Error 0.015 0.014
Simulation Std. Error 0015 0.013 Absolute bias 0.057 0.013
Absolute bias 0.037 0.011 Coverage 80% 100%
Coverage 95% 100% F-statistic 80.20
F-statistic 88.50 Conditional F-statistic 48.00
Conditional F-statistic 54.82 No. SNPs 53 97
No. SNPs 59 93 B> Liability effect 0.395 0.328
B Liability effect 0.428 0.353 Effect estimate 0.386 0322
Effect estimate 0418 0.351 Est. Std. Error 0.027 0.022
Est. Std. Error 0.024 0.020 - -
Simulation Std. Error 0.013 0.013
Simulation Std. Error 0.012 0.013
- Absolute bias 0.013 0.011
Absolute bias 0.013 0.010
Coverage 100% 100% Coverage 100% 100%
F-statistic 102.40 F-statistic 28.63
Conditional F-statistic 63.66 Conditional F-statistic 66.32
No. SNPs 60 93 No. SNPs 62 92
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Controversies

e Simulation studies:

30

¢ EXpOSlJre X Z{’l t) G + cos(t) U + sin(t) ex aj(t) = Ay j+ Agjcos(Ag;t — Agj)

* Outcome
e Scenario 1: outcome is a function of exposure at two fixed
time-points: t=10 and 50
* 1A: the exposure is measured at time 10 and 50 Y =04X(10) — 0.8 X(50) + U + ey
e 1B: the exposure is measured at time 10, 40 and 50
e 1C: the exposure is measured at time 15 and 30

a0
* 1D: the exposure is measured at time 15 and 50 Y = / B(t) X(t)dt + U + ey

41

* Scenario 2: outcome is a continuous function of exposure 0 for t € [0,40
varying over time [exposure measured at 10 and 50] =Y e 140,50] (Scenario 2A)
e 2A: null in early life (up to 40) and positive in later life 05 forte 0,20
e 2B: positive in early life (up to 20) and null later life B(t) = ) ot e 0501 (Seonnrio 25

e 2C: constant and positive across the life course
B(t) =0.1 for t € [0,50] (Scenario 2C).
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Results: discrete effects

50 LT |
* in Scenario 1C and in N ; | )
Scenario 1D, median 153 : .-
estimates are of et ==
substantially different to £, : ! :
the true values. = o] a - —peme
£ 504 ! I
. . '240- ! |
* Bias in 1A and 1B due to £ , [ .
weak instruments 2: | e !
50 - ! - ] e I
404 ! |
30 ) J o
?gj I ce_(—o |
104 i ]
10 -08 -05 0.0 04 05
MVMR estimates
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Results: continuous effects .. . | | :
N Y IS | B !-*-*_ __________ bt 5
: — HEEEES e e
an: i & 3 of----- i_" ____________ f-i_’: _______ f--!-l.t---.%
10 E o] —e= Em- —————————————————————————————————————————————
Eﬁﬂ ! o—{T}—= % L e | T | ST, 9
g:g M N S | LA S | !____L'L!, [3
w . m
g 20- : e ——————
£ 1o ——- | R | RO | R )
—— Tl **%%%%
. i S - 0 20 40 60 O 20 40 60 O 20 40 60
20 4 : : Timepoinis mEEISUfEdO
ol == . . * Scenario 2C: a range of different choices of

-2 0 2 4
MVMR estimates

timepoints that exposures are measured.
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Conclusion

 When the exposure affects the
outcome at a limited number of
discrete timepoints and the risk
factors in the multivariable
Mendelian randomization analysis
are the values of the exposure at
these timepoints, causal effects at
these timepoints can be unbiasedly
estimated.

i S > A %/

y = }‘ > 2 K e
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Methods for time-varying MR

* Multivariable MR (MVMR)

e G-estimation of structural nested mean model (SNMM)

-
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Introduction

* instrumental condition (2) is violated with respect to the effect of Am
on Y because Z has direct effects on the outcome Y through the
exposure at time points other than m.

m

VA > A »Y Z — Ay — Ay

o ////

A B

-
! . ;ﬂ AR o Y
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Definitions

* Three types of causal effects

* the effect of exposure at a single time point on the outcome
(point effect),

- the effect of exposure during a period on the outcome (period
effect),

* the effect of exposure throughout the lifetime on the outcome
(lifetime effect).

b F
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Point Exposure L Ly D

* each component of the time-varying exposure other than Am is

unaffected by the instrument (i.e., no arrow from Z into A; when t #
m) or does not affect the outcome through A,, (i.e., no arrow from

A, whent £ mtoY) E[Y®m] — E[Y%m]

A.1.2.1 Point effect

Suppose that we are interested in the causal effect of a time-varying exposure at age m on an

outcome Y measured once at age k > m. That is, we are interested in identifying the following
causal effect:

E[Y%m] — E[ym]
The instrumental conditions are:
1. Z 1L A,, does not hold; that is, there is a non-null association between Z and A,,

2. Yiz*“m = Yiz lam }}am forall z, 7', all a,,,, and all individuals i; that is, there is no direct effect
of ZonY

3. Y#%m || 7 for all z, a,,,; that is, there are no common causes (or other sources of non-

exchangeability) between the instrument and the outcome

/INT=sJTull L




Point estimation assumption

However, by assuming no effect of Z on A, or no direct effect of A; on Y (i.e. not through A4,,), where
t # m, the second instrumental condition holds. For example:

e We have removed the arrows from Z to A, and from Z to A; (thereby assuming no effect of
the instrument on exposure at time 0 and time 1) in the following SWIG:

o  ** - =
.Z|z A[} —_— ‘41 rea Az A . }r”"r

e

¢ We have removed the arrows from A, to ¥*= and from A, to ¥*m (thereby assuming no
effect of the exposure at time 0 and time 1 on the outcome) in the following SWIG:

—

Z|z Aj Aj ' AL lam Ym

U %\_//f/:f’/

e  We have removed the arrows from Z to Ay and from A4 to ¥%m in the following SWIG:

/—/ng

AP Ay —— A7 o Aila, - Yom

MJTﬁ



For each point?

Now suppose that, for each individual in the study population, the time-varying
exposure were measured atp + 1 timessm —p, ... , m—1, m.Ifwe
conducted p + 1 separate MR analyses, each using one of these exposure
measurements, can we interpret the resulting MR estimates as an estimate of the
point effect at each age? The answer is no, because we have, at best, a single
instrument Z for all p + 1 MR analyses. The answer would be yes if we had p + 1
instruments, each satisfying the instrumental conditions for a distinct exposure
time point ay form — p < h < m.

) » A
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Period and Lifetime Exposure

. ! / !
* Generalized form  E[Y%m-pOm-14m]| — F [Y“m—p»---ram—l,am]

* To satisfy the second instrumental condition, each component of the time-
varying exposure outside of the period [m — p, ..., m — 1, m] must be
either unaffected by the instrument or affect the outcome only through
affecting subsequent exposure at time pointsm — p - m.

* First, suppose we have measured all relevant exposure time points during
the period [m — p, ..., m — 1, m]. Then, under the additional assumption of
no interaction between the exposure at different time points, we can
identify the controlled direct effects of each exposure time point during

thlS periOd, E[Yam_p,...,ah,...,am] _ E [Yam_p,...,a;l,...,am]

;« P — Pt
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Period and Lifetime Exposure

A.2.1 Estimating average causal effects of time-varying exposures with multiple
instruments under the assumption of no effect modification by the instrument
* Generalized form

or by prior treatment
E [Yam_p,...,am_l,am] _

! / !
E Yam_p,,am_l,am

Theorem. Under an IV model where Z =

= (Z,,Z,), the average treatment effect E[Y %%+ — Y“:"a;] is
identifiable if the following assumptions hold:

Assumption 1. There is no additive effect modification for the effect of treatment 4,, 4, on outcome
Y by Z;, by Z, or jointly by Z; and Z,, conditional on exposure history; that is

By - vebe12,7, A ]
= E[yeom — yaoai|z, Ay, A,

= E[yooa — yaoai|z, Ay, 4|

~ Efyeos: — yebai A, 4

Assumption 2. There is no interaction between treatment time points, conditional on instrument
and exposure history; that is,

E[Y%0@1=1 _ y@oa1=0|7. 7 4., A,]
¥ f
= E[y%ed=1 — ydo®m=0|7, 7, Ao, A

Assumption 3. The relative change in the association between the instrument and exposure is not
constant between instruments; that is,

E[A1|Z1 = 1] - E[A1|Zl = U] E[A1|Zz =

= 1] — E[44]Z; = 0]
E[4olZ, = 1] — E[Ap|Z; = 0] * E[AglZ; = 1] — E[44|Z, = 0]

Nate: an extension of this assumption to more than 2 time points is available in A.2.2

VA AN JTUJ—




Period and Lifetime Exposure

e Shifting trajectories E[Y %m-ptL-w@m-1*t1lam+1] _ prydm-p,.am-1,am]

* one measurement of the exposure:
* the Z— A, association must be constant on the additive scale form —p < t < m, or, for
a dichotomous instrument Z, E[A;|Z = 1] — E[A;|Z = 0] must be the same for all t in

this period. A.2.4 Estimating the effect of a shift in the exposure trajectory using a single
instrument

Theorem. The average treatment effect E[Y®o*t1@1+1 — y@0.@1] j5 jdentifiable with a single
instrument Z under an IV model where the three instrumental conditions are met, assumptions (1)

and (2) hold, and either assumption (4) or assumption (5) hold:

Assumption 4. The association between Z and 4, is constant for ¢t = 0,1; that is,
E[AolZ = 1] — E[4,|Z = 0] = E[A,|Z = 1] — E[A,|Z = 0]

Association 5. The effect of A; on outcome Y is constant for t = 1,2; that s,

E[Yaoa1 — y0.a1] = E[Y %041 — Y @0.0]

N ¥IEL AL I o
& T i VA RN SJTd
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Period and Lifetime Exposure

e Shifting trajectories E[Y %m-ptL-w@m-1*t1lam+1] _ prydm-p,.am-1,am]
- multiple (not all) measurements of the exposure:

« we can identify the effect of shifting the exposure trajectory across multiple
time points within the period of interest if the exposure at some of those time
points are unmeasured and the instrument-exposure association remains
constant over those time points.

* In general, given the period [m — p, ...,m — 1,m] with p + 1 relevant exposure
time points, of which j < p + 1 are measured and p + 1 — j are unmeasured, we
can identify some period effects if the magnitude of the instrument-exposure
association at each p — j unmeasured exposure time point is equal to the

magnitude of the instrument-exposure association for at least one of the j
measured exposure time points.

= A ’_‘
) Ve -
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Summary

TABLE 1. - Possible Causal Estimands in Mendelian Randomization Studies of time-varying Exposures and Their Identifiability Assumptions

Paint effect

Period effect?

Generalized
form

Shiftin
exposure
trajectories

- ;\: V4 )
/"/’é)\i@)t’j-

SHANGHAI JIAO TONG UNIVERSITY

Estimand (on the Additive Scale)

Difference in mean counterfactual outcomes had everyone received exposure a at time m versus
had everyone received exposure a “at time m: E [Y *m] — E [Y“‘jﬂ]

Difference in mean counterfactual outcomes had everyone received the exposure trajectory
(am_p, vy Q_1,0,,) between times m — p and m versus had everyone received the
exposure trajectory (a:n_p, eey @y, @h,) betweentimesm — pand m:

E[Y “m—p--am—tm| _ B [Y 9n—p-- m—wm]

Difference in mean counterfactual outcomes had everyone received the exposure trajectory
(am_p, vy Q_1,0,,) between times . — p and m versus had everyone received the same
exposure trajectory after shifting the exposure by one unit across the entire period

E [Yﬂfn—p']-‘--‘, am—+1, am—l] — E[Yom—p-. . am—jim)

Assumptions Required for Identification

With a Single Exposure Measurement

Instrumental conditions hold for the proposed
instrument for exposure at time m. For instrumental
condition 2 to hold, each component of the time-
varying exposure other than at time m must be
unaffected by the instrument or have no effect on
the outcome?

With Multiple Exposure Measurements

N/A

Instrumental conditions hold for the exposure, as a whole, between times m — p and m (i.e, each
component of the time-varying exposure outside of this time period is unaffected by the instrument or has

no effect on the outcome)

No realistic assumptions for identification in MR
studies

1. The association between the instrument and the
exposure is constant on the additive scale between
times m — pand m®

2. Instrumental conditions hold for the exposure
trajectory between times m — p and m. For
instrumental condition 2 to hold, each component of
the time-varying exposure outside of this time period
must be unaffected by the instrument or have no
effect on the outcome®

All relevant exposure time points have been
measured and at least as many instruments as the
number of exposure time points are available. The
association between instrument-exposure must
vary between time points for at least one
instrument

No realistic assumptions for identification in MR
studies if not all relevant exposure time points
have been measured

If all relevant exposure time points have been
measured and there are a sufficient number of
instruments, no additional assumptions are
needed.

If only a subset of relevant exposure time points
have been measured, the instrument-exposure
association during unmeasured time points must
be the same as the instrument-exposure
association for at least one of the measured time
points

YA RN



Structural mean models

 SMM for the point effect at time m
E[Yam — YolAm = Am, Z] — V(Z: Am; l/)m) — l/)m,lam + lpm,zamz

* The parameters of this saturated model cannot be identified with IV
estimation.

V(Z, am; Ym) = V(Am; Y)
E[Y*m —Y°|A;, = am, Z] = Vim,1m

534 -
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Structural mean models

* SMM for the period effect betweenm — p and m
E|yam-p-fm-10m —yO | A =apn ., A1 = o1, Am = A, Z |
B =Y @Qm-p - Gn-1, A P)
0=(an—p=0..,0n-1=0a,=0)

 Structural nested mean model: it represents a series of nested equations,
where each equation corresponds to an exposure time point.

-
\ 7% 4/}?,: TJ—’“ Pt
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Structural mean models

* With one measurement of the exposure at time h where m —p < h < m and
under the assumption that the instrument—exposure association is constant over
this period, the period effect of shifting the exposure trajectory shift can be

represented by ¥ in the SMM.
E[Yam_p=a,...,am_1=a,am=a _ YO | Am—p — am—p» ---:Am—l — am—l'Am — am,Z]
— 1/)a

* With up to p + 1 exposure measurements during the period [m —p, ..., m — 1, m|,
the model expands to include up top + 1 Y parameters. Each i parameter
corresponds to the controlled direct effect of its corresponding exposure time point.

Am—p»-Am—1,4 0 _ _ _

— lpm—pam—p + ot Y101 T Ypan

e S - s x4 ‘ -
Sh=y 3 /"/’ XA A ’? YA —— ]
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g-Estimation

e Point effect
l//J\ _ Z?=1 Yl(Zl _E(Z))
i i1 Ami(Z; — E(Z))

* Period or lifetime effect
—~ / / -1
¢ — Y’(Z — E(Z))(Z — E(Z)) Am—p,...,m [A;n—p,...,m(z — E(Z)) Am—p,...,m]
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g-estimation of SMM

e Exposure with two time points

A o B //7—<—\

y P / z z,a -
Z ‘1“ —_— ‘1] e } Z Fe— ‘1'5-]‘”” —_— ‘11 I‘I:]‘nl —_— l 1y, (1]

Condition 1. Z 1L Ay, A; does not hold; that is, there is a non-null association between the
instrument and the exposure at both time points.

r
.y Z,an,a z'ag,a ag,a . . . . . .
Condition 2.Y;""*"* =Y """t =Y, > forall z, Z', ay, a,, and all individuals i; that is, there is no

direct effect of the instrument on the outcome.

Condition 3. Y#%% |l 7 for all z, a,, a,; that is, there are no common causes (or other sources of
non-exchangeability) between the instrument and the outcome -
7 xd N Lod U L
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g-estimation of SMM

e Saturated structural nested mean models (SNMMs)

Fortimet = 0: E[Y%®=0 _ya0=0a:=017 — 7 AZ = q,,] = ay(Bo1 + Lo22)
Fortimet = 1: E[Y% %1 —Y%®81=0|7 = 7 AZ = a,, A7 = a;| = a;(B11 + P122 + P13 + B1400Z)

* rank-preserving structural nested model (SNM)
* assumes the effects of treatment are the same for every individual

» g-estimates of Y from the rank-preserving model are consistent for the
parameters [ of the mean model (JM Robins, 1994)

0

ﬂ’ﬂ' DJG —
Y, =Y = Ypa9 + Pooa0z

g, ap,0 __
Y; - Y = Y1104 + P12a012 + Py13a1a¢ + YP14a4a02

g ¥ A
N 3 [s R (S—) i 1
£ P \'\I F/ \q,:kf L ~> ’
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g-estimation of SMM

* Consistency: link the rank-preserving models to the observed data

Y400 = ¥ — (Y114 + Y1241 Z + Y1341 Ag + P14A1AgZ) Yy Aol =y ol if Ay = ag
YD‘U - YAG'G — (lpﬂlx‘qﬂ + l‘bnzAGZ) Y = Yﬂﬂ"ala 1fAEI — aﬂaﬂl —

e candidate counterfactuals:

Hi(yT) =Y - (¢I1A1 + A1z + PliA a0 + lb;r:tﬂlﬂnz)
Ho(¥1) = Hy (1) — (Y0140 + 02402)
When Y+ = 9, the candidate counterfactuals, Ho(i)+) and

H:1(y+) are equal to the true counterfactuals Y ao-0,a:-oand
YAo,a1=O

* Nested model
H () =Y - (vl 4 T A, Z+vl.A,A T A AZ) — (Wor A A7)
D(lp) (wu 1+ Y412 +P3A1A0 + P, A4 ) Vo1l + Yo24o
Kl K E - M
; ﬁo\uﬂj‘ /1 \T=17SJT




g-estimation of SMM

* Exchangeability: the g-estimate of i) (and therefore [3) is the value
T that results in the estimate of a4 that is closest to 0

logit Pr(Z = 1|Ho(¥1)] = @ + arHo (1)
> Hou(") (2 —E[2]) = 0

mn
Y; — (Wl Ay + 9l A0z + 1Ay A + w1, A140i2) — (Wl Ag + Wi,A0:2)] (2, — E[2]) = 0
=1

Unidentifiable: we have a single equation with six unknown parameters.

-
) e
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g-estimation of SMM

Assumption 1. There is no additive effect modification for the effect of treatment 4,, A; on outcome
. o - Y by Z,, by Z, orjointly by Z; and Z,, conditional on exposure history; that is,
* |dentifiability:

E[Y%® — Y|z, 7, Ay, A, |
= E[yoa: — yaoai|z, Ay A,]
= E[y%a — yaoti|z, Ay, A]
— E[Yan,al _ Ya:]'ailAﬂ,Al]

Assumption 2. There is no interaction between treatment time points, conditional on instrument
and exposure history; that is,

E[Ya:1=1 _ yaom=0|7, 7. A A,]
= E[y%@=1 — yaa:=0|7, 7, A, A,]

Assumption 3. The relative change in the association between the instrument and exposure is not
constant between instruments; that is,

E[A,1Z; =1] - E[A,|Z; = 0] + E[A,]Z; = 1] — E[A4]|Z, = 0]
E[A0|Z1 = 1] - E[A0|Z1 = U] E[AU|ZZ = 1] - E[A0|Zz = U]

__/IN\I=suTUl [




g-estimation

of SMM

* no interaction between 4 and Z and t: simplify SMM and

corresponding ran

Fortimet =0: E
Fortimet =1: E

* Independence

logit Pr[Z, = 1|Ho(y1)] = ayo + ay1Ho(¥1)
logit Pr[Z, = 1|Hy(¥1)] = aye + az Ho (Y1)

- A
ViELAAE
- ~ T
SHANG JIAO TONG UNIVERSI

K-preserved model

v g,0 0,0 _ _ Z1,Z3 __ _

YU —YONZy = 21,2, = 25, A 7° = ﬂu:] = Bo1ay

v ao, 0 _ _ Z1,Z2 _ Z1,25,09 _ B
_Yﬂ'ual — Y40 |Zl = 21,22 = Zz,Aﬂl 2 = ﬂﬂ,All 270 — ﬂl] = Bllal

Zy 1L Y80.%1 and Z, 1L Y %0
Z(Yf — g1 Ao, — Y11 An) (Zy; —E[Z1]) = 0

Z(Yi — PdrAoi — IPLAH) (Z,; —E[Z,]) = 0
i=1

s




g-estimation of SMM

* When size of T equals to size of Z:

n

D (= wfido, —whiaw) @i~ Elzi]) = 0 0= (Y- A49') (z - E[2])
i=1

Z(Yi — Yd1A0i — Pi1A1) (Zo; — ElZ,]) = 0 0=(Y-A49") (Z-E[Z])

i=1 0=Y'(Z-E[Z]) - pA'(Z - E[Z])

YA'(Z —E[Z]) =Y'(Z - E[Z])
PA'(Z - Elz] )(z ~E[z])A=Y'(z - E[Z])(Z - E[2]) A
= v'(z - E[z])(Z - Blz]) A4’ (z - E[2]) (A'(Z - E[2])'A) '

e Over-identified: GMM - minimize (Y—Ai]}') (Z — E[Z])

By @nepetmeran _y0 | 4 A 4 = 7 shifting trajectory 1 unit: >y
[ | A, p = Qm—po>Fm-1 = Gt A =G> ] Bootstrapping confidence
+¥ a interval and SE
m m

AP = ;ym p a4, p t... . —
Z S ‘/\,‘ff"‘* e "
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Supplementary: Robins’ G-methods

e g-formula
 Marginal structural models: inverse probability weighting
e g-estimation of structure nested models

e s

4 '. - S g

(@) YAXd A% P
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Example: sequential treatments

* Treatment on HIV is measured at baseline (4,) and once during follow
up (A;)
* The sole covariate is elevated HIV viral load (Z = 1 for those with > 200

copies/ml, Z = 0 otherwise), which is constant by design at baseline
(Zo = 1) and measured once during follow up just prior to the second

treatment (Z,). //_\

* OQutcome: CD4 AO




Conditions for identification

E[Yao’allAO — 1: — E:Yao'al AO — O]
E[YaOrallAO — ao,Zl,Al — 1: — E:Yao'al AO = Ay, Zl'Al — 0]
YCLO,Cll 1 AO
Yao'allzl,AO 1 Al

//—_\’-
Ay —> 2y — A —> Y

<
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SWI1Gs

* Single World Intervention Graphs

a b
A\ //.._—\?\A

A, —/'> L, > A,y > Y A4, 2
U / W U

A||(1| _'/>L’u) — A’¢t||07 —» Ya.q, Allal m‘ ya.a,

U w u

7L o vH AL “F m
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Assumptions

e Counterfactual consistency
E(YlA() — ao,Al — al) — E(Yao'allAO — ao,Al — al)
* Exchangeability

E[Yao’allAO — 1: — E:Yao'al AO — 0]

E[Y%%"|Ay = ay,Z,A; = 1] = E[Y?"1 Ay = ay,Z,, A, = 0]
* Positivity
0<PA,=1|Z, =2z,A3=0ay) <1
O0<PAy=1)<1

534 -
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g-formula

E(y ) = E{E(Y"" | Ay)}

— E{E(Yﬂﬂ’al Ag = (10)}

= E[E{E(Y**" | Ay = ao, Z1, A1) | Ao = ao}]

= E[E{E(Y®™™" | Ay = ag, Z1, 41 = a1) | Ay = ao}]

= E[E{E(Y | Ao = ao, Z1, A1 = a1) | Ao = ao}]

:ZE(Y|A0=(10321=2‘11A1 = a)P(Zy = 21 | Ao = ao)

“1
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Marginal structural models

e Saturated
E|Y%%]| = By + Yoag + Y104 + Y0004
By = E[Y%Y]

P = B —Y00) = g + 1y +




[PW of marginal structural models

I(Ap=ap, A1 =a1)Y
P(Ay = ay | Zy, Ag = ag)P(Ag = ay)
E{ [(Ap = ag, A1 = @)Y }
P(Al = d ‘ leAg = GU)P(AQ = (LQ)

_ E{I(Ao = ag)l(A; = a)E(Y | Ay = ag, Z1, Ay = al)}
P(Al = dy ‘ le AO = Go)P(AO = (Lo)
E{I(AO = (lo)P(Al = a1 | Zl,AQ = CLQ)E(Y | A[] = (I,[],leAl = Gl)}
P(Al = a | Zl,A.[) = aQ)P(A[] = ag)
E{I(AO — QO)E(Y ‘ AO = CLO?leAl = a,l)}

P(Ag = ay)
_ [I(Ao =ao)E{E(Y | Ao = ag, Z1, A1 = a1) | Ap = ag}]
P(Ay = ag)
= E{E(Y [ Ag = ap, Z1, A1 = a1) | Ao = ao} equals the g-formula

- R P
g /= R
2| f o I—"l_y
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Structural nested model

E(Yoa — YaO|Ay = ay, Zy = z1,A1 = ay)

=H1{!'£rf| + tlbla“ + '1'5'321 + !f'r;-’-laﬂzl} O CDV{Y Al !.bl - Ill'ljzf"l[j ||Zl AU}

ivag 0 w00 — —
E(Y Y™ 1Ao = a0) = Woao = Cov{Y — A1 (Y, + V> A0) — YoAo, Ao},
To simplify our exposition, we set (Y3, ¥4) = (0,0) in

4 )
our data example, @

0 = Cov(Y*®" Ay|Zy,Ap) 3 CE[(1 - Ag)Y{As — E(A1|Z1, Ap)}]
= Cov(Y"Y, Ap) o E[(1 - Ay) AI{AI E(A1|Z1,A)}]
b 4, = E[A)Y{A) — E(A1|Z1,A0)}]
o8 TR T E[ApA1{Ar — E(A1]Z1, Ao)}]
Jo. = EIY{AU - Au]'}]

[Au {Ag — E(Ay) }]
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Summary

* |dentifiable assumptions
* Interpretations of estimates
* Practical utility?
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