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Mendelian randomization

• IV1: associated with the exposure 
X (the ‘relevance’ assumption);

• IV2: independent of the outcome 
Y given the exposure X (the 
‘exclusion restriction’); 

• IV3: independent of all (observed 
or unobserved) confounders of X 
and Y, as represented by U (the 
‘exchangeability’ assumption)

Model

𝑌 = 𝛽0 + 𝛽𝑋 + 𝑈 + 𝜈𝑦

𝑋 = 𝜋0 + 𝜋𝐺 + 𝑈 + 𝜈𝑥

Summary data

Γ𝑗 = 𝛽 ෝ𝜋𝑗

Individual-level data

𝑌 = Γ0 + Γ𝑗𝐺𝑗 + 𝜖𝑦,𝑗

𝑋 = 𝜋0 + 𝜋𝑗𝐺𝑗 + 𝜖𝑥,𝑗



Controversy for time-varying exposures

• A usual interpretation of MR 
results for time-varying 
exposures: “lifetime effect” 
– but lacks clarify

• The G-X relationship varies 
with age: FTO (fat mass and 
obesity-associated gene)-
BMI

• Solid: AA
• Short-dashed: AT
• Long-dashed: TT



Lifetime effect

• Time-fixed exposure
𝐸 𝑌𝑘

𝑎+1 − 𝐸 𝑌𝑘
𝑎

• Time-varying exposure
𝐸 𝑌𝑘

ത𝑎+ഥ1 − 𝐸 𝑌𝑘
ത𝑎

The effect of shifting the 
entire exposure trajectory 
(ഥ𝑨) by 1 unit on 𝑌 at time 𝑘.



Example 

𝛽𝐴𝑌 =
𝛽𝐺𝑌
𝛽𝐺𝐴

Time-point IV estimate

if the genetic effect is constant over time
𝛾1 = 𝛾1 × 𝛾3 + 𝛾2

The IV estimate using either time point could potentially be 
a valid estimate of the lifetime effect of A on Y when the 
relationship between G and A is constant through time. 



• Solid line: G-A association

• Dotted line: A-Y association

• Estimation time: at 30 and 50

Simulations constant FTO-like increase decrease

uniform

recent

critical

increase

Genetic scenario G-A

Exposure 
window
A-Y



Results

• The unbiased 
estimates 
when there is 
a constant 
genetic 
scenario (G-X)



Another interpretation: liability effect

• We are not estimating the causal effect of an exposure as it manifests 
at a given time point, but the effect of the underlying exposure 
liability. That is, we assume that there is some unobserved (latent) 
variable L, which is caused by the genotype G, and in turn causes the 
exposure at every instance across the lifecourse.



Example 



Example 

• MR estimates the 
causal effect of a 
change in liability 
𝐿 that results in an 
expected one-unit 
change in 
exposure 𝑋𝑡



Methods for time-varying MR

• Multivariable MR (MVMR)

• G-estimation of structural nested mean model (SNMM)
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• Multivariable MR (MVMR)
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MVMR

• MVMR is proposed to cope with the 
horizontal pleiotropy.

• Assumptions:
• the variant is associated with 1 or 

more of the risk factors,

• the variant is not associated with a 
confounder of any of the risk factor–
outcome associations, 

• the variant is conditionally 
independent of the outcome given all 
of the risk factors and confounders.



MVMR

• Individual-level

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑈 + 𝜈𝑦

𝑋1 = 𝜋01 + 𝜋1𝐺 + 𝑈 + 𝜈𝑥1

𝑋2 = 𝜋02 + 𝜋2𝐺 + 𝑈 + 𝜈𝑥2

• Summary

Γ𝑗 = 𝛽1 ො𝜋1,𝑗 + 𝛽2 ො𝜋2,𝑗 + 𝜖𝑗

it is necessary to have at least as many 
genetic instruments as there are 
exposures to be instrumented in the 
model



Simulations 

Simulated data generation mechanism



Simulations 

• With single-sample individual-level data, implemented:
• OLS, both for X1 and X2 individually (i.e. univariable regressions) and together (i.e. a 

multivariable regression);
• MR for X1 and X2 individually, each time using all the available SNPs as instruments;
• MVMR including both X1 and X2 in the same analysis;
• MR for X1 and X2 individually using only the SNPs that are valid instruments for that 

exposure (G1 and G2, respectively).

• With two-sample summary-level data, implemented:
• MR for X1 and X2 individually using all of the instruments available;
• MVMR including both X1 and X2;
• MR for X1 and X2 individually using only the SNPs that are valid instruments for the 

exposure.



Results

• In general, MR estimates the total effect of the exposure on the 
outcome, whereas MVMR estimates the direct effect of each exposure 
on the outcome.



Summary for MR vs.. MVMR



Test for assumptions

• Individual-level data
• Instrument strength: Sanderson–

Windmeijer conditional F-statistic

• Instrument validity: Sargan test



Test for assumptions

• Summary data
• instrument strength: heterogeneity is ‘good’

• the model will be at least exactly identified when there will be at 
least as many independent genetic instruments as there are 
exposure variables to be instrumented. we can test for under-
identification in our estimation model by testing for over-
identification using the Sargan test as described above.

• instrument validity: heterogeneity is ‘bad’
• if all instruments are valid IVs, and the modelling assumptions 

necessary for two-sample MR are satisfied, then each genetic 
instrument should give the same estimate of the effect of the 
exposure on the outcome. Excessive heterogeneity in the causal-
effect estimates obtained by each SNP individually now becomes 
an indicator of invalid instruments. 



Application: mediation analysis

• Mediation analysis
• Difference method

• Product of 
coefficients method



MVMR for mediation analysis

• Advantages:
• If M is not a mediator of X and 

Y but is in fact a confounder (or 
even collider) of X and Y, the 
estimated direct effect will be 
equal to the estimated total 
effect and so the lack of 
mediation will be clear from the 
results obtained. 

• Tolerant for pleiotropy and 
confounders of M and Y



MVMR for time-varying exposures

• MVMR with multiple measures of a 
time-varying exposure estimates the 
direct effect of the liability to exposure 
at a particular period, i.e. the effect of 
the liability to the exposure at a time 
point that is not mediated by other time 
points included in the estimation.

• Genetic liability: the collective effect of 
all genetic variants associated with the 
exposure



Assumptions

a) liability to each exposure is robustly predicted by the genetic 
variants conditional on the other exposures included in the 
estimation, 

b) there is no confounding of the genetic variants and the outcome, 

c) the genetic variants are not associated with the outcome other 
than via liabilities to exposures included in the estimation, i.e. there 
are no horizontal pleiotropic effects of the genetic variants on the 
outcome via other phenotypes. 



Simulations 

• In (a) 𝑋1 and 𝑋2 are associated with different liabilities. 

• In (b) 𝑋1 and 𝑋2 are associated with the same liability. 



Results 



Results 

• The univariable estimates give an estimate of the total effect of a 
liability that is associated with having a unit higher level of the 
exposure at the time point associated with the measured exposure.

• When the measured exposures are associated with different liabilities, 
MVMR consistently estimates the genetically predicted causal effect 
of being on a trajectory associated with a unit higher level of that 
exposure, given the liability to the exposure at the other time period. 

• When the measured exposures are associated with the same liability 
there is no difference in the genetic effects on the measured 
exposures and therefore weak instrument bias is introduced into the 
MVMR estimation.



Scenario 𝑌→ 𝑋2

• A causal effect from the outcome to the later time point

• Simulation results without Steiger filtering show that although the 
genetic variants strongly predict the exposure at each time period 
conditional on the other, MVMR estimation gives biased estimates of 
the direct causal effect of the exposure at both time periods on Y. → 
collider bias

• Steiger filtering: to remove any SNPs that explain more variation in the 
outcome than the later exposure.



Results 



Three liability time periods

• Correlated genetic effects
• Independent genetic 

effects
• When the association 

between the genetic 
variants and the excluded 
liability are correlated with 
those for the included 
periods the effect 
estimated will include 
some of the effect that 
acts via the omitted 
liability. 



Results 



Controversies 

• Simulation studies:
• Exposure

• Outcome 
• Scenario 1: outcome is a function of exposure at two fixed 

time-points: t=10 and 50
• 1A: the exposure is measured at time 10 and 50

• 1B: the exposure is measured at time 10, 40 and 50

• 1C: the exposure is measured at time 15 and 30

• 1D: the exposure is measured at time 15 and 50

• Scenario 2: outcome is a continuous function of exposure 
varying over time [exposure measured at 10 and 50]
• 2A: null in early life (up to 40) and positive in later life

• 2B: positive in early life (up to 20) and null later life

• 2C: constant and positive across the life course



Results: discrete effects

• in Scenario 1C and in 
Scenario 1D, median 
estimates are 
substantially different to 
the true values.

• Bias in 1A and 1B due to 
weak instruments



Results: continuous effects

• Scenario 2C: a range of different choices of 
timepoints that exposures are measured.



Conclusion 

• When the exposure affects the 
outcome at a limited number of 
discrete timepoints and the risk 
factors in the multivariable 
Mendelian randomization analysis 
are the values of the exposure at 
these timepoints, causal effects at 
these timepoints can be unbiasedly 
estimated. 



Methods for time-varying MR

• Multivariable MR (MVMR)

• G-estimation of structural nested mean model (SNMM)



Introduction 

• instrumental condition (2) is violated with respect to the effect of Am 
on Y because Z has direct effects on the outcome Y through the 
exposure at time points other than m.



Definitions 

• Three types of causal effects
• the effect of exposure at a single time point on the outcome 

(point effect), 
• the effect of exposure during a period on the outcome (period 

effect), 
• the effect of exposure throughout the lifetime on the outcome 

(lifetime effect).



Point Exposure

• each component of the time-varying exposure other than Am is 
unaffected by the instrument (i.e., no arrow from 𝑍 into 𝐴𝑡 when 𝑡 ≠
𝑚) or does not affect the outcome through 𝐴𝑚 (i.e., no arrow from 

𝐴𝑡 when 𝑡 ≠ 𝑚 to 𝑌)              𝐸 𝑌𝑎𝑚 − 𝐸 𝑌𝑎𝑚
′



Point estimation assumption



For each point?



Period and Lifetime Exposure

• Generalized form       𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚 − 𝐸 𝑌𝑎𝑚−𝑝
′ ,…,𝑎𝑚−1

′ ,𝑎𝑚
′

 

• To satisfy the second instrumental condition, each component of the time-
varying exposure outside of the period [𝑚 − 𝑝,… ,𝑚 − 1,𝑚] must be 
either unaffected by the instrument or affect the outcome only through 
affecting subsequent exposure at time points 𝑚− 𝑝 → 𝑚.

• First, suppose we have measured all relevant exposure time points during 
the period [𝑚 − 𝑝,… ,𝑚 − 1,𝑚]. Then, under the additional assumption of 
no interaction between the exposure at different time points, we can 
identify the controlled direct effects of each exposure time point during 

this period,  𝐸 𝑌𝑎𝑚−𝑝,…,𝑎ℎ,…,𝑎𝑚 − 𝐸 𝑌𝑎𝑚−𝑝,…,𝑎ℎ
′ ,…,𝑎𝑚



Period and Lifetime Exposure

• Generalized form       
𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚 −

𝐸 𝑌𝑎𝑚−𝑝
′ ,…,𝑎𝑚−1

′ ,𝑎𝑚
′



Period and Lifetime Exposure

• Shifting trajectories 𝐸 𝑌𝑎𝑚−𝑝+1,…,𝑎𝑚−1+1,𝑎𝑚+1 − 𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚

• one measurement of the exposure:
• the 𝑍—𝐴𝑡 association must be constant on the additive scale for 𝑚− 𝑝 ≤ 𝑡 ≤ 𝑚, or, for 

a dichotomous instrument 𝑍, 𝐸[𝐴𝑡|𝑍 = 1] − 𝐸[𝐴𝑡|𝑍 = 0] must be the same for all 𝑡 in 
this period.



Period and Lifetime Exposure

• Shifting trajectories 𝐸 𝑌𝑎𝑚−𝑝+1,…,𝑎𝑚−1+1,𝑎𝑚+1 − 𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚

• multiple (not all) measurements of the exposure:
• we can identify the effect of shifting the exposure trajectory across multiple 

time points within the period of interest if the exposure at some of those time 
points are unmeasured and the instrument–exposure association remains 
constant over those time points. 

• In general, given the period [𝑚 − 𝑝,… ,𝑚 − 1,𝑚] with 𝑝 + 1 relevant exposure 
time points, of which 𝑗 < 𝑝 + 1 are measured and 𝑝 + 1 − 𝑗 are unmeasured, we 
can identify some period effects if the magnitude of the instrument–exposure 
association at each 𝑝 − 𝑗 unmeasured exposure time point is equal to the 
magnitude of the instrument–exposure association for at least one of the 𝑗
measured exposure time points.



Summary 



Structural mean models

• SMM for the point effect at time 𝑚
𝐸 𝑌𝑎𝑚 − 𝑌0 𝐴𝑚 = 𝑎𝑚, 𝑍 = 𝛾 𝑍, 𝑎𝑚; 𝜓𝑚 = 𝜓𝑚,1𝑎𝑚 + 𝜓𝑚,2𝑎𝑚𝑍

• The parameters of this saturated model cannot be identified with IV 
estimation.

𝛾 𝑍, 𝑎𝑚; 𝜓𝑚 = 𝛾(𝑎𝑚; 𝜓𝑚)
𝐸 𝑌𝑎𝑚 − 𝑌0 𝐴𝑚 = 𝑎𝑚, 𝑍 = 𝜓𝑚,1𝑎𝑚



Structural mean models

• SMM for the period effect between 𝑚− 𝑝 and 𝑚
𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚 − 𝑌ഥ0 𝐴𝑚−𝑝 = 𝑎𝑚−𝑝, … , 𝐴𝑚−1 = 𝑎𝑚−1, 𝐴𝑚 = 𝑎𝑚, 𝑍

= 𝛾(𝑎𝑚−𝑝, … , 𝑎𝑚−1, 𝑎𝑚; 𝜓)
ത0 = (𝑎𝑚−𝑝 = 0,… , 𝑎𝑚−1 = 0, 𝑎𝑚 = 0)

• Structural nested mean model:  it represents a series of nested equations, 
where each equation corresponds to an exposure time point.



Structural mean models

• With one measurement of the exposure at time ℎ where 𝑚− 𝑝 ≤ ℎ ≤ 𝑚 and 
under the assumption that the instrument–exposure association is constant over 
this period, the period effect of shifting the exposure trajectory shift can be 
represented by 𝜓 in the SMM.

𝐸 𝑌𝑎𝑚−𝑝=𝑎,…,𝑎𝑚−1=𝑎,𝑎𝑚=𝑎 − 𝑌ഥ0 𝐴𝑚−𝑝 = 𝑎𝑚−𝑝, … , 𝐴𝑚−1 = 𝑎𝑚−1, 𝐴𝑚 = 𝑎𝑚, 𝑍

= 𝜓𝑎

• With up to 𝑝 + 1 exposure measurements during the period [𝑚 − 𝑝,… ,𝑚 − 1,𝑚], 
the model expands to include up to 𝑝 + 1 𝜓 parameters. Each 𝜓 parameter 
corresponds to the controlled direct effect of its corresponding exposure time point. 

𝐸 𝑌𝑎𝑚−𝑝,…,𝑎𝑚−1,𝑎𝑚 − 𝑌ഥ0 𝐴𝑚−𝑝 = 𝑎𝑚−𝑝, … , 𝐴𝑚−1 = 𝑎𝑚−1, 𝐴𝑚 = 𝑎𝑚, 𝑍

= 𝜓𝑚−𝑝𝑎𝑚−𝑝 +⋯+ 𝜓𝑚−1𝑎𝑚−1 + 𝜓𝑚𝑎𝑚



g-Estimation 

• Point effect

𝜓𝑚,1 =
σ𝑖=1
𝑛 𝑌𝑖(𝑍𝑖 − 𝐸 𝑍 )

σ𝑖=1
𝑛 𝐴𝑚,𝑖(𝑍𝑖 − 𝐸 𝑍 )

• Period or lifetime effect

𝝍 = 𝒀′ 𝒁 − 𝐸 𝒁 𝒁 − 𝐸 𝒁
′
𝑨𝑚−𝑝,…,𝑚 𝑨𝑚−𝑝,…,𝑚

′ 𝒁 − 𝐸 𝒁
′
𝑨𝑚−𝑝,…,𝑚

−1



g-estimation of SMM

• Exposure with two time points



g-estimation of SMM

• Saturated structural nested mean models (SNMMs)

• rank-preserving structural nested model (SNM)
• assumes the effects of treatment are the same for every individual

• g-estimates of 𝜓 from the rank-preserving model are consistent for the 
parameters 𝛽 of the mean model (JM Robins, 1994)



g-estimation of SMM

• Consistency: link the rank-preserving models to the observed data

• candidate counterfactuals:

• Nested model

When 𝜓† = 𝜓, the candidate counterfactuals, 𝐻0(𝜓†) and 
𝐻1(𝜓†) are equal to the true counterfactuals 𝑌𝑎0=0,𝑎1=0 and 
𝑌𝐴0,𝑎1=0



g-estimation of SMM

• Exchangeability:  the g-estimate of 𝜓 (and therefore 𝛽) is the value 
𝜓† that results in the estimate of 𝛼1 that is closest to 0

Unidentifiable: we have a single equation with six unknown parameters.



g-estimation of SMM

• Identifiability:



g-estimation of SMM

• no interaction between 𝐴 and 𝑍 and 𝑡: simplify SMM and 
corresponding rank-preserved model

• Independence



g-estimation of SMM

• When size of 𝑇 equals to size of 𝑍:

• Over-identified: GMM - minimize

shifting trajectory 1 unit: ∑ψ
Bootstrapping confidence 
interval and SE



Supplementary: Robins’ G-methods

• g-formula

• Marginal structural models: inverse probability weighting

• g-estimation of structure nested models



Example: sequential treatments

• Treatment on HIV is measured at baseline (𝐴0) and once during follow 
up (𝐴1)

• The sole covariate is elevated HIV viral load (𝑍 = 1 for those with > 200 
copies/ml, 𝑍 = 0 otherwise), which is constant by design at baseline 
(𝑍0 = 1) and measured once during follow up just prior to the second 
treatment (𝑍1).

• Outcome: CD4



Conditions for identification

𝐸[𝑌𝑎0,𝑎1|𝐴0 = 1] = 𝐸[𝑌𝑎0,𝑎1|𝐴0 = 0]

𝐸[𝑌𝑎0,𝑎1|𝐴0 = 𝑎0, 𝑍1, 𝐴1 = 1] = 𝐸[𝑌𝑎0,𝑎1|𝐴0 = 𝑎0, 𝑍1, 𝐴1 = 0]

𝑌𝑎0,𝑎1 ⊥ 𝐴0

𝑌𝑎0,𝑎1|𝑍1, 𝐴0 ⊥ 𝐴1



SWIGs

• Single World Intervention Graphs



Assumptions 

• Counterfactual consistency
𝐸 𝑌 𝐴0 = 𝑎0, 𝐴1 = 𝑎1 = 𝐸(𝑌𝑎0,𝑎1|𝐴0 = 𝑎0, 𝐴1 = 𝑎1)

• Exchangeability 

𝐸[𝑌𝑎0,𝑎1|𝐴0 = 1] = 𝐸[𝑌𝑎0,𝑎1|𝐴0 = 0]

𝐸[𝑌𝑎0,𝑎1|𝐴0 = 𝑎0, 𝑍1, 𝐴1 = 1] = 𝐸[𝑌𝑎0,𝑎1|𝐴0 = 𝑎0, 𝑍1, 𝐴1 = 0]

• Positivity

0 < 𝑃 𝐴1 = 1 𝑍1 = 𝑧1, 𝐴0 = 𝑎0 < 1

0 < 𝑃(𝐴0 = 1) < 1



g-formula



Marginal structural models

• Saturated

𝐸 𝑌𝑎0,𝑎1 = 𝛽0 + 𝜓0𝑎0 + 𝜓1𝑎1 + 𝜓2𝑎0𝑎1

𝛽0 = 𝐸 𝑌0,0

𝜓 = 𝐸 𝑌1,1 − 𝑌0,0 = 𝜓0 + 𝜓1 + 𝜓2



IPW of marginal structural models

equals the g-formula 



Structural nested model

To simplify our exposition, we set (𝜓3, 𝜓4) = (0,0) in 
our data example,



Summary

• Identifiable assumptions

• Interpretations of estimates

• Practical utility?
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