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Causal inference
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1/ Congratulations are due to our colleagues Joshua
Angrist and Guido Imbens on receiving the 2020 Nobel
Prize in Economics, thus

drawing the limelight to the science of causal inference
and to the new methodology which they have helped
develop.

It is no secret that | have been Yo &7

2/ (and still am) a staunch opponent of Angrist and
Imben's methodology, primarily for its

overlooking the two Fundamental Laws of causal
inference.

Nevertheless, their method has caused a shakeup in
economics and a greater appreciation for the general

problem of drawing causal
. Ko &7



Causal inference

* Correlation # causality
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Real-world evidence
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Outline
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From RCT to MR

Mendelian randomization
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RCT & MR

a An RCT to test whether lowering CRP lowers SBP

Confounders (U)
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b An MR study to test whether lowering CRP lowers SBP

Confounders (U)
Genetic variant associated > [CrP (X . T<BP Y
with lower CRP (G) > (X) > (Y)




RCT & MR

TABLE 1. Analogies between randomized controlled trials and Mendelian randomization

studies

Randomized controlled trial

Design and analysis
Random allocation of treatment

Actual receipt of treatment

Disease outcome

Intention-to-treat analysis: effect of random allocation
on outcome in whole study population

“True” treatment effects: effect on outcome for persons
who actually received the treatment

Possible sources of bias

Unblinding: based on knowledge of the allocated
treatment, doctors and/or patients adapt
management/behavior during the course of the trial

Differential follow-up between randomized groups

Subgroup effects

Mendelian randomization

Random allocation of genotype
Intermediate phenotype or gene
product that is influenced by the
genotype

Disease outcome

Genotypic effect on outcome
Effect of the intermediate

phenotype or gene product on
outcome

Canalization: developmental
adaptation to the genetically
determined problem—*“buffering”

Selective survival

Gene-environment interaction,
gene-gene interaction



MR from an IV perspective

1. Relevance:Zis @ ~=="> Confounder C

associated with the v (1) / \

exposure (X) Instrument Z ———>»{ Exposure X ——>»| Outcome Y
ope . S b 4

2. Exchangeability: Zis (3)
independent of the I Cha
unmeasured confounder __Confounders
(C). B /

3. Exclusion restriction: Z
cannot have any direct SNP —; Exposure Outcome

effect on the outcome (Y).



[V assumptions

* [V condition 1: relevance. The IV is associated with the exposure.
* [V condition 2: exchangeability. There are no causes of the IV that also influence the outcome through mechanisms
other than the exposure of interest (no confounders of the IV and the outcome).
* IV condition 3: the exclusion restriction. The IV does not affect the outcome other than through the exposure and does
not affect any other trait that has a downstream effect on the outcome of interest.
Only the first condition can be formally tested. The other two conditions can be disproved and otherwise assessed
through a range of sensitivity analyses, but cannot be demonstrated to be true”**”. Methods for testing the first condition
and of assessing the plausibility of the second and third conditions are discussed in the ‘Results’ section.

Condition 1 @ Condition 2 @

Condition 3
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The 4™ IV assumption: Point estimation

7’7?#@%%1’5 TR RS T, FE b @ Z B TNV ixc:

homogeneity of the effect of the exposure on the outcome:
 either (a) the effect of the exposure on the outcome is the same for everyone, regardless
of the starting value of X or any other individual characteristics, or (b) the effect of the
exposure on the outcome does not depend on the value of the instrument.
* ACE

2. monotonicity in the association between the genetic variants and the
exposure
* LATE
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* One-sample MR: individual-level data

* two-sample MR: summary data
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Wald ratio estimator
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_ E[SBP|G=1] - E[SBP|G =0]
"~ E[CRP|G=1] - E[CRP|G = 0]

éé:ﬂ;.é LY — %Eﬁ LX >< %E;é XY s

> X
axb
G . 4
a
Ratio Estimate
G — Y association axb 5
G — X association = a




TSLS/25LS
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TSLS

« HFERIE: IV S exposureBUAH [F]—— B ELAEYE CIE 4R A1)

When G and X are of same dimension (n>1), we have:
Y=XB+¢
XY =X'XB + X'e
G'Y=G'XB+G'e
By = (G'X)"Y(G"Y)
Vn(By — B) = N(0,0%QZ Qs6Qsy )

where (G'X/n) & Qex, (G'G/n) 2 Qg6



TSLS

When G and X are of different dimension (d(G)>d(X)), we have:

Two-stage least squares (2SLS) estimator:

Zzl:
i
SO
S

By = (XTG(GTG)'G'X)"(X"G(G'G)~'GTY)
Asymptotic distribution:

V(B — B8) £ N(0,0*(QexQ71Qxs) ")

Stage 1:
X =X(G'G)~'G"x

Stage 2:
By = (X'X)~'X"y



o« IRBISRE: LML

° Bayes{EﬁL Bv=(Z'X)'72Y

* }_AX%E{%—HA: GMM Prsis = (X'Z(Z'Z2)'2’X)" (X'Z(Z'Z)7'Z'Y)
. g_{ﬁﬁ—: SMM = (X'P,X)(X'P,Y)

= (X'PLPzX)(X'P,PZY)

={( XX X¥

Bowm = (X' ZWZ'X) " (X'ZWZ'Y)
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Method

Ratio estimator
(RE)

Two-stage least
squares (25LS)

Linear probability
models (LPM)

Two-stage
predictor
substitution
(25PS)

Two- stage
residual inclusion
(25RI)

Basic notion

-the RE is appropriate when only
one IV

-linear models without making
parametric assumptions on the
error terms

for multiple 1Vs, IV estimator is
the weighted average of the ratio
estimators

-applied for binary outcome,
exposure, and |V, the data are
modelled using linear functions
-far a single binary 1V, the
estimator equivalent to the RE

-the rote extension to nonlinear
models of the linear |V models
-targets a marginal (population-
averaged) odds ratio

-it is the mimic of 25LS
-non-linear least squares is used
to estimates the parameter

-for a linear model, 25PS = 2508

-include the estimated
uncbservable confounder
(residual) from the first-stage as
an additional variable along with
the exposure in the second-stage
model

- also called control function
estimator

-under a linear model, 25R1 =
25L5=25Ps

Exposure effects

-RD, RR, OR

-estimator similar as
classical regression

RD

-RD, RR, OR

-RD, RR, OR

Strength
-simple estimation method

Limitation
-not suitable for multiple Vs

-with & single binary |V and no other -does not allow to adjust confounders

confounders, 25LS = RE

-natural starting point of [V analysis
-the estimate asymptotically
unbiased

-widely used for binary exposure
and outcome and provides the
exposure effect on risk difference
scale

-unlike RE, it is able to adjust the
possible measured confounders

-simple to estimate and interpret as
the regression coefficients
-the RD is consistent for the ACE

-suitable for non-linear association
between exposure and outcome

-yields consistent estimates for
linear and non-linear models
-performs better than 25PS
-paossible to apply in the specific
case of a binary exposure with a
binary or count outcome

-for a log-linear model in the stage-
two, 2SR estimator provides CRR

- may not consistent for the causal OR

-show biased results in binary cases or in the case of
non-linear models

-for multiple IVs, 25LS estimator is biased and hence
limited information of maximurm likelihood method
would be an alternative

-for smaller sample sizes, limited information maximum
likelihood estimator is more efficient and consistent
than 25LS

-IV and 25LS are a special case of GMM;

however both yield the same results in the case of
homoscedastic errors variance

- sometimes predicted probabilities outside of the

0-1 range and for rare outcomes this may become
negative

- assumes the marginalfincremental effect of exposure
rermains constant which is logically impossible for

binary outcome

-in practice, 25PS in non-linear model does not always
yield consistent exposure effects on the outcome

- parameter estimation process is more difficult than
25L8

-under a logistic regression model, 25PS may not
provide causal OR

-it may give biased estimates when there is strong
unmeasured confounding, as is usually the case in an
IV analysis

-under a logistic regression model, 2SR estimator may
not provide causal OR

-generally require the exposure to be continuous,
rather than binary, discrete, or censored

Two-stage logistic
regression
(25LR)

-when outcome and exposure are
binary and interest to estimate OR
-fully parametric, maximum
likelihood technique is used to
estimate the parameters

-0OR

-parallel to 25LS using LRM in both
stages instead of linear models

-if the first-stage logistic mode! is not correctly specified
then second-stage parameter estimates might be
biased

-estimator does not provide COR
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Three-stage least
squares (35L3)

Structural mean
models (SMM)

Generalized
method of
moments (GMM)

Bivariate probit
models (BPM)

-an extension of 25LS but
unlike the 25LS, all coefficients
are estimated simultaneously,
requires three steps

-in 25L5, if the emors in the
two equations are correlated,
the 35LS can be an suitable
alternative

-RD, RR

-SMMs use |Vs via G-estimation
and involves the assumption of
conditional mean independence
-additive SMMs use continuous
outcome and multiplicative SMis
use positive-valued outcomes
-MSMM assumed log-linear model
to measure the risk ratio

-LSMM assumes logistic
regression model which is fitted
by maximum likelihood technique

RD. RR, OR

-a non-linear analogue of 25LS
-the standard |V (250L5) estimator
is a special case of a GMM
estimator

-making assumptions about the
moments of the error term
-allows estimation of parameters
in aver-identified model (number
of IV greater than number of
exposure variable)

-the parameters are estimated in
an iterative process

RD. RR. OR

-two-stage method, but as
different to 25LS and model the
probabilities directly and are
restricted on [0,1]

-full information maximurm
likelihood is used to estimate the
parameter

-accounts for the correlation
between the errors

Probit coefficient*

-more vulnerable to a misspecification of the error
termms

-very rarely applied in epidemiologic studies
-estimation process is more complicated than 25LS
-35LS becomes inconsistent if errors are
heteroskedastic

-more information is used and
hence the estimators are likely to
be mare efficient than 25LS

-it relaxes several of the modelling
restrictions (constant treatment
effects) required by ratio estimator/
two-stage methods

-can be used in the case of time-

-the assumption of no effect modification iz impossible
to verify

-with & binary outcome, additive SMMs and MSMM
dependent instruments, exposures, suffer from the limitations of linear and log-linear

and confounders models (e.g.. predicted response probabilities may
-provides average treatment effects outside of the interval [0, 1))

for the treated subjects

-it requires specification only of
certain moment conditions
-applicable for the linear and non-
linear models

-non-linear GMM estimator is
asymptotically more efficient than

25LS -GMM estimator with logistic regression model is not
-more robust and less sensiive to  consistent for the COR due to non-collapsibility of the
parametric conditions OR

-works better than 25LR when
exposure and outcome are binary
-in case of heteroskedasticity, this
is more efficient than the linear IV
estimators

-for binary outcome and exposure,

BFM perform better than linear IV

methods -when the distribution of error terms are not normal
-the estimator of BPM have no or the average probability of the outcome variable is
interpretation like OR. However, by |close to one or zero, the BPM estimator may not be
multiplying a probit coefficient by | consistent for ACE

approximately 1.6, the estimator

can be made to approximate OR



Two-sample methods

* ;5&55}% G_')‘(% I?DG'Y E/‘J effect size Estimating causal effects. MR estimation with summary
~ 'ﬁiﬁ%‘ﬂ‘ #HE 1R SE level data requires estimates of 7, the estimated effect

of genetic variant / on the exposure with variance o,

and I}, the estimated effect of genetic variant / on the
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Comparison

Table 3. Comparison of strengths and limitations of one-sample and two-sample Mendelian randomization (ME)

Ome-sample MR

Two-sample MR

Strengths Flexibility of the analytical strategy in terms of  Improved sample size and power
regression models that can be performed as— Flexibility and enhanced power to perform an

well as covariates and participants that can

be includedfexcluded

Permits thorough evaluation of confounders to

test above assumption

Allows for comparison with ohservational
estimates in same study (e.g., through

Durbin-¥u-Hausman test)

Can model interactions, survival time, and
other analyses (including MR analysis of

nonlinear effects)

Limitations Traditionally low power and therefore

imprecise causal estimates

Potential for selection bias caused by study

sampling

Weak instrument bias is toward observational

estimate

Winner's curse in which the sample in the
discovery GWAS is the same as that used for
MR, which can lead to overestimation of the
strength of association of the genetic

instrument with the exposure

Meed to have access to individual-level genetic

and phenotypic data

array of sensitivity analyses (e.g., pleiotropy-
robust methods)
Less time-consuming and easier to implement

Can evaluate causal relationships between a
range of exposure and outcomes, which might
not be possible in a single sample setting

Unable to thoroughly evaluate individual-level
confounding factors

Assumes the two samples are exchangeable.
Examples of where this is difficult to assert are
where the samples are heterogeneouos in terms
of age, sex distributions or ancestry

Potential for selection bias caused by study
sampling

Weak instrument bias is toward null

Winner's curse in which the discovery GWAS
used to estimate the SNP-trait association may
overestimate the effect of the genctic
instrument relative to the exposure

Belative rigidity of the summary data available,
which is limited by the original GWAS model
performed (e.g., adjustment for unwanted
covariates and a lack of available data on
subgroups of interest (e.g., sex-specific
cstimates)

SMP-exposure and SWP-outcome associations
should be coded relative to the same effect
allele, also known as "harmonization,” which
is nontrivial in the situation of palindromic
SHPs (e, G/C and AfT SNPs) and in the
absence of information on allele frequencies

Assumes no overlap between samples, which
could bias estimates if this is not true

D¥irect comparison with observational estimates
not as straightforward

Unable to model interactions, survival time, and
other analyses (incuding nonlinear analyses)
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Binary outcome

* Individual-level data:

» 2SPS: two-stage predictor substitution GLM (generalized
R N e linear model): LM +
Les = T (Wﬂfs)fﬂl‘ﬂ =1,...,85 y=M(x% +Zeve) + CRal link function

* 2SRI: two-stage residual inclusion

EL’[&' — Legg — T3 (ﬂ}ﬁﬁ)fﬂ[‘g — ]-:- et S Y= ﬂi{(mtﬁﬁﬂ + mﬂﬁm + fEu ﬁu) + E‘.EHHI

* Summary data:
* Logistic regression: Sy, = logOR
* Odds ratio



Binary outcome

2SPS

ZAIN

Table 1. Different Instrumental Variable Estimators and the Assumptions Required for Consistency

Estimator
(Equation No.)

Ratio estimator (5)

Ratio estimator (6)

2-stage, logistic
second stage (7, 8)

2-stage, log-linear
second stage

Control function,
logistic second
stage (9, 10)
Control function,
log-linear second

stage

MSMM (12)

MSMM (12)

LSMM (13, 14)

MGMM (15, 16)

Target
Parameter

Population
CRR

Population
COR

Population
COR

Population
CRR

COR
conditional
onU

Population
CRR
CRR effect on

exposed

Population
CRR

COR effect on
exposed

Population
CRR

Assumptions Required for Consistency

Model for ¥ given do(X) and U is log-linear in X and U,
without interaction; model for X given Zand U is linear
without interaction, and X is approximately normally
distributed (see reference 13).

Not generally consistent; approximately consistent for rare
diseases under same assumptions as ratio estimator of

the population CRR.

Same as ratio estimator of population COR.

Same as ratio estimator of population CRR.

Generally not consistent, but converges to LSMM when X is
normally distributed (see reference 47).

Same as 2-stage estimator with log-linear second stage.

Log-linear model for ¥ given do(X), X and Z, no effect
modification by Z.

Log-linear model for ¥ given do(X) and U, no effect
modification by U.

Logistic model for ¥ given do(X), X and Z, no effect
modification by Z; association model for ¥ given X and Z
has intercept, unrestricted main effect of Z and fitted by
maximum likelihood.

Same as MSMM estimator of the population CRR.

Abbreviations: COR, causal odds ratio; CRR, causal risk ratio; LSMM, logistic structural mean model;

MGMM, multiplicative generalized method of moments; MSMM, multiplicative structural mean

model.
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Recall

SNP1 |SNP2| SNP3 |[SNP4 SNP5 SNP6
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Extension

Method Description Directed acyclic graphs (DAGs) Applications
Bidirectional or Used to evaluate the causal G, » X » Y Body mass index
reciprocal MR direction(s) of effect between G, Y . X (BMI) and vitamin
(Timpson et al. two traits X and Y, with the D (Vimaleswaran
2011) use of valid instruments Gy et al. 2013)
and Gy
Two-step MR Used to assess the role of an G, G, DNA methylation,
(Relton and intermediary factor (Z) in l l gene expression,
Davey Smith mediating the effectof X on Y X 7 — Y and BMI
2012) with the use of valid (Mendelson et al.
instruments Gy and G, 2017)
Network MR Extension of the two-step MR G Gy Effect of education on
(Burgess et al. approach to consider the l l cardiovascular
2015) causal role of multiple X » Z » Y disease (CVD) via

mediators or causal networks smoking, BMI, and
alcohol (Carter et al.

2019)



Reciprocal MR: reverse causality
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Two-step MR: mediation effect
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Extension

Multivariable MR Used to assess the role of \ Lipid fractions and
(Burgess and multiple correlated exposures G /' y coronary heart
Thompson using genetic variants that 12 \ - disease (CHD)
2015) are associated with one or G, —* Z (Burgess et al. 2014)

multiple exposures to estimate
the independent causal effect
of each exposure on the
outcome. Can also be adapted
to evaluate mediation (in
combination with or separate
to two-step MR)

Factorial MR/ Used to determine the combined Gt X Statin (HMGCR),
exposure causal effects of two or more XZ— Y ezetimibe
interactions risk factors for disease within a Go . / (NPCIL1) and
(Rees et al. factorial design CHD (Ference et al.

2020) 2015)
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Recall the assumptions

Instrument Z ———>»

» Confounder C

7 .

Exposure X ——>»

Outcome Y

Relevance: Zis
associated with the
exposure (X).

Exchangeability: Z is
independent of the
unmeasured confounder
(C).

Exclusion restriction: Z
cannot have any direct
effect on the outcome (V).



[. Relevance: weak instrument

o BL/NSNP IR AL 1R /)N
e Weak IV: fFone-sample MRH & & & ftiX-Y ) effect, fEtwo-sample
MRH & & KA X-Y B effect

o fii FH B ZSNPIEAIV, B {8 HPRS: polygenic MR
o PEUTIVEREL: first-stage F statistic (F >10)




[I. Exchangeability

* Population-based MR # RCT

* instrument—outcome
confounding:

* Population stratification

* Dynastic effects a

* Assortative mating

* Transmission ratio distortion
(TRD): sy~ Gr st R s 4 R AR HOBER AR
* meiotic drive #%sr 2R
* gametic competition i 7754
* embryo lethality s

Dynastic effects tH AR

-
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III. Exclusion restriction: invalid IV

* Pleiotropy &
linkage
disequilibrium

Z }’ > X ﬁ* > Y
\{/
Y=z7tte, 1=a;+y,B
~ _L ‘yjﬁ

=B —|— A —B + b,(f fay Tin)
Vi 7’; Yi
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e Misspecification
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of the primary phenotype f Correlated pleiotropy
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P Chorizontal pleiotropy) . HEEH Z 3% (vertical pleiotropy)
« P22 (balanced pleiotropy) « A HZ (% (directional pleiotropy)
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« THRZHE Cuncorrelated pleiotropy) « FfHIZ A (correlated
pleiotropy)
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b B2 20

* One-sample
* Lasso-type: sisVIVE, post-adaptive lasso
* hard thresholding with voting (TSHT) (8. B) = aramin ~||P,(Y — Z6 — XB)|2 + 161,
« Confidence Interval Method (CIIV) o4 2 )
e constrained IV, MR-GxE

* Two-sample
* MR-Egger
Median-based
Mode-based
Robust regression, penalization
Bayesian MR, BWMR, JAM-MR
CAUSE
MR-PRESSO, MR-link, MRmix, MRAID



Recall: IVW
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From IVW to MR-Egger Z\/

* MR-Egger:
IVWAE [ V3 A B e AR A0,
MR-Egger Il /] LA g i2H 10
(average directional
pleiortopy) 5 0

’ EF,EEEA%)H&I\,fEX‘[&InSIDE/—‘K i MR-Egger: valid causal estimate
fF: G-X-YIHAZ (ﬂ%/) e o
%Gﬁﬁ%)& EEEEF L
YRR Ca) A A A
A [the instrument o

strength independent of g |
direct effect] SNP-exposure

O Pleiotropic SNP @ Nonpleiotropic SNP

Lj =0+ By L'j = Bop + BE:};j

IVW: invalid causal estimate

True slope

SNP-outcome




Median and mode estimator

e Median: &I —FRIVER M G20

* Mode: 1€ A 1SF2HHFEMETHMER S, BV 2 A—
HAEH R (REBR2H0D

o IBLRRA * R b

Inverse variance weighted Inverse variance weighted Weighted median
/" MR Egger /" Weighted mode
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Regularization methods

e Recall IVW: By =0 By +¢, €~ N0, seBy)],

* B%/J\’T/tizﬁi%% MSE I — arg .min Z SE(B}})_I(B}}- — 6 ,é;g)z.
* MR-Egger: 51}' =6y + Ok E‘\j +¢, €~ N[0, SE(E}})E]-

* Pleiotropy: add penalized term
* L1-penalty

OLASSOL = arg min |:Z 5-’:(31_}-)__(3}_}' — 6Boj — 0L ﬁ}g)h + A Z |60, :| ;
J

P

J
* Bayesian:
* Penalty term = shrinkage prior (e.g. horseshoe, spike-slab, etc.)



Sensitivity analysis

* Heterogeneity test
 Cochran’s Q test; I? statistics

* Pleiotropy test

« MR-EggerffF Iil: test directional
pleiotropy

* MR-PRESSO test
« B4 —3FE leave-one-out
* Funnel plot: XTHr

rs7903146
rs13078960
rs11727676
rs35817334
rs1516745
rs11057405
rs12286929
rs2112347
rs16851483
rsb091540
rs12429545

rs173516
rs10182181
rs1528435
rs13201877
rsZ1583845
rs11030104
rs3849570
rs11672660

All

0.0 0.2 0.4

MR leave-one-out sensitivity analysis for

0.6

'‘Body mass index’ on 'coronary heart disease’



Summary data methods for independent

A%

Approach

Assumption

Description

References

Inverse-variance
weighted (IVW)
and MR-Egger
regression

MR-Egger regression

Modal estimator

Median estimator

NO measurement error
(NOME)

Instrument strength
independent of direct effect

(InSIDE)

Zero modal pleiotropy
assumption (ZEMPA)

Simple median = the causal
effect is provided by the
median SNP estimate

Weighted median = the causal
effect is provided by the
weighted median SNP
estimate

There is no measurement error in the
association between the single-
nucleotide polymorphism (SNP)
and the exposure

The strength of the SNP-exposure
association should not correlate
with the strength of the pleiotropy
effect

The most common causal effect
estimate is a consistent estimate of
the true causal effect, even if the
majority of instruments are invalid

Simple median = at least 50% of the
instruments are valid (i.e., not
pleiotropic)

Weighted median = at least 50% of the
weight in the analysis stems from
variants that are valid instruments
(i.e., not pleiotropic)

Bowden et al.

2016b

Bowden et al.

2015

Hartwig
et al. 2017

Bowden et al.

2016a

X B LR T AR
& 1 IV ST )R
5E, XTTcis-MRE:
i R Z 4t TLDIR
AN AMALEv,
T 2 A FH A v
(Upenalized

regression, PCA%E)

Ab T



Other MR methods

Category Core IV assumption Individual-level data Summary data
relaxed
‘Basic’ MR method None Wald ratio estimation, 25LS Wald ratio estimation, [VW="
regression analysis®
Weak instrument IV1: allows for weak LIML®®, allele score MR RAPS* debiased VW', MR
robust methods instruments approaches™ GRAPPLE™, NOME adjustment'™,
two-sample AR
Qutlier/variant IV3; allows for Weighted median'* Weighted median®***
selection and balanced/sparse
removal pleiotropy
Outlier/variant IV3; allows for (some)  sisVIVE™, adaptive LASSO’,  Weighted mode®**', MR LASSO*, Steiger
selection and directional pleiotropy weighted mode™” filtering>*, Welch-weighted Egger®,
removal contamination mixture!, GSMR™,
MR-Clust'", Bayesian MIMR', CIV"*
Outlier/variant IV3; allows for Limited approaches currently MR RAPS®, MRCIP**
adjustment balanced pleiotropy  available
Outlier/variant IV3; allows for (some)  Limited approaches currently MR TRYX™, MR Robust™, MR CAUSE™,
adjustment directional pleiotropy available MR PRESSO*, MR GRAPPLE*, MRMix'**,

MR-LDP**, IMRP'¥, regularization®,
MR-PATH (see preprint™™)

Estimation IV3; allows for Limited approaches currently — Debiased IVW**’

adjustment balanced pleiotropy  available

Estimation IV3; allows for (some)  Constrained IVs”, MR Egger™, multivariable MR™**', MR

adjustment directional pleiotropy multivariable MR" Link“™, hJAM**, GIV*", Bayesian network
analysis’, BMRE"", BayesMR""

Environmental IV3; allows for (some) MR GxE™", MR GENIUS"' Limited approaches currently available

control adjustment directional pleiotropy



MR methods for summary data

MR-PRESSO MRMix
WMR BWMR [MR-RAPS
< 0 © N~ eo) o)) o —
- i = i 3 = ~ N
= o @) = o o o o
N N N N N N N N

T T ] I

IVWR MR-Egger CoMM-S2| PMR-
Egger
GSMR CAUSE

moPMR-Egger

OMR

2022

MRAID

Debiased
IVWR



Software

o ARIIE 7R
- AER

—

/an = (Z'X)_IZT'
Posts = (}1})—IE|Y: (7 !Xisz)_IP_z 'X'Y,
Brys =(X'PXY'X'BY=[X'Z(Z'2)'Z'X]'X'2(Z2'2)'Z'Y

* MendelianRandomization
* TwoSampleMR

Package name
Individual-level data
AER

OneSampleMR

ivmodel

ivtools

ivonesamplemr

ivreg?

ivregress
Summary-level data

MendelianRandomization

TwoSampleMR
and MR-Base app

mrrobust

Software

Stata

Stata

Stata

Riweb-app

Stata

Description

Includes the ivreg function for 2515
estimation

Various functions for one-sample IV
analyses, including the Sanderson—
Windmeijer F statistic, and various
estimators (two-stage predictor
substitution, two-stage residual inclusion,
structural mean models)

Various functions for individual-level IV
analyses, includes LIML, weak instrument
tests and sensitivity analyses

Various functions for individual-level |V
analyses, including functions to fit structural
mean models

Includes various estimators (two-stage
predictor substitution, two-stage residual
inclusion, structural mean models) for
one-sample |V analyses

Stata module for extended 1Vs/25L5 and
generalized method of moments estimation

Linear IV estimators including 25L5

Implements several methods for performing
MR analyses with summarized data and an
interface with the PhenoScanner database

MR-base is an analytical platform for MR.
TwoSampleMR is the R package providing
the functions to perform MR estimation.
Both are linked to the OpenGWAS project,
alarge database of GWAS summary statistics

Provides various programs for two-sample
MR analysesin Stata



MR 5T 1 J55 PR 14




LLimitations

* |V selection: strength, pleiotropy, linkage

* Interpretation: i f%

A

2R TE ) 5 B AR 4

environment equivalence
* Non-linear: model misspecification
* Beavis effect: winner’s curse
* Population stratification & Selection bias
* Time-varying exposure: & 8 A=l
* Gene-gene interaction & Gene-environment interaction

* Reverse causality
* Collider bias

) B 520 Gene—



Winner’s curse

What is a Winner’s Curse?

BID

WIN

i

N,

Bidding takes The wins the bid at
place. a high price.

Beavis effect:

overestimating the effect size of detected QTL

@

~

.; N e 7 S

~—

=] [e————]

2 =

O —
significance threshold L

Despite win_ning, Winner regrets the
the value paid was decisi
overestimated. ecision. Large Small

Population size

4&-\ WallStreetMojo



Population stratification

1/8

Population
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Gene-gene interaction

* Linkage disequilibrium

RECOMBINATION RATE:

L 3 - Chromosome

i
Distance

LINKAGE DISEQUILIBRIUNM:

. L S Chromosome
Association

* Epistasis: non-addictive effect

Epistasis

AaCc

AaCc

[3]

ac

AaCc

Genotypes

e
2~

9/16
Phenotypic ratio




Gene-environment interaction

Trait

Trait

® =xG + yE + 2GE + ¢,
x=0, y=0, z=0 (lower) or

x>0, y=0, z=0 (upper)

El, E2

il

E1,E2

Gl G2
Genotype

® = xG + yE+2GE + ¢,
x>0, y>0. z>0,
multiplicative model

=

_________-E1

Gt G2
Genotype

Trait

Trait

®=xG + yE +2GE + ¢,
x=0, y>0, z=0

E2
E1

G1 G2
Genotype

® = xG + yE +2GE + ¢,
x>0, y>0, z>0,
additive model

E2

E1
)
G1 G2
Genotype

Trait

Trait

®=xG + yE + 2GE +¢,
x>0, y>0, z=0

E2
E1

AN

Gl G2
Genotype

® = xG + yE + 2GE +¢,
x>0, y>0, z<0, rank
order change




Time-varying exposure

canalization: the robustness of phenotypes to
perturbation
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Reverse causality

* Bidirectional / reciprocal MR

* MR Steiger directionality test:

* In MR it is assumed that the instruments influence the exposure first and then
the outcome through the exposure.

o ViR exposurelI e /1 M 1% L il Feoutcome T BE /) 5 5



Collider bias

Go back 50 years; in Western world,
Confounder Collider female college students were smarter
than male ones on average. Why?

Exposure Qutcome Exposure Outcome

Distorted association when failing to Distorted association when
control for the confounder controlling for the collider




TRIANGULATION
A checklist.

® The different approaches address
the same underlying question.

® The key sources of bias for each
approach are explicitly acknowledged.
® For each approach, the expected
directions of all key sources of
potential bias are made explicit, where
feasible.

® |deally, some of the approaches
being compared will have potential
biases that are in opposite directions.
@ |deally, results from more than two
approaches — which have different
and unrelated key sources of potential
biases — are compared. Source: ref. 3

ILUSTRATION BY DAAD PASIINS

— ffuE#E triangulation

COMMENT

7
G e
E -
. S
1 ' Y
2 1
o § d 5

TECHNOLBEY From training to
therapy = applications of
virtual reality surveyed p.402

CULTURE Biography of YouTube
maps a parallel universe of
viral video p483

PLASTICS China’s banon OBITUARY Calestous Juma,
imported waste could African science champion,
boost sustainability p405 remembered p406

Repeating experiments
is not enough
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As readers

Strong evidence InEerventional

of causation

Systematic
review of RCTs

Cahort
Case control

Ecological
Yery weak evidence ogi Dhservational

of causation

Reading Mendelian randomisation studies: a guide, glossary,
and checklist for clinicians

Meil M Davies,"* Michael V Holmes,"*** Gaarge Davey Smith**

Box 2: Critical appraisal checklist for evaluating Mendelian randomisation studies

Some key questions readers can ask below.

Core Mendelian randomisation assumptions

# |5 there sufficient evidence that the genetic variants are robustly associated with the risk factor of interest?

* Are the genetic variants associated with potential confounders? Do the authors present this relationship?

* | there any way for the genetic variants to affect the outcome through alternative pathways (horizontal pleiotropy)? Da the authors present

alternative Mendelian randomisation approaches (such as MR Egger, median, and mode estimators, or use of "negative control™ populations) to
investigate this mare fully?

Methods reporting

All studies
+ Are the effect and other alleles coded in the same direction for the exposure and outcome?

Two sample studies
* Were the twao samples drawn from the same population?
* Were the two samples independent?

* Was the analysis restricted to independent variants (that is, pruned of SNPs in linkage disequilibrium) or did the analysis allow for the
comelation between variants?

Data presentation

# Do the authors present the results as a genetic association, an instrumental variable estimate, or both?

* |fthey provide an instrumental variable estimate, do they compare it with the conventional observational estimate?

* Do the authors provide sensitivity analyses such as MR Egger, weighted median, and mode Mendelian randomisation, or use negative control
populations?

# Do the authors manually pick and choose which SNPs go into the instrument to tackle pleiotropy? If 50, is the approach and justification clear?

# Do the authors provide the data that they used (especially for Mendelian randomisation analyses conducted at the summary level) in a
supplement to allow researchers to reproduce their findings?

Interpretation

* |fthe Mendelian randomisation estimate is similar to the observational estimate and provides evidence in support of a causal effect, could it be
due to weak instrument bias in a single study or confounding through, for example, harizontal pleiotropy?

* |fthe Mendelian randomisation estimate differs from the observational estimate and provides little evidence of a causal effect, could this be due
to weak instrument bias when using two different samples or negative confounding due to pleiotropy?

* Mendelian randomisation provides estimates of the effects of the risk factor over a lifetime, and the numerical effect estimates may not be
clinically meaningful. Will interventions at a specific age have the same sized effects?

* Are the 95% confidence intervals of the Mendelian randomisation estimate sufficiently precise to identify the observational estimate and a
clinically meaningful difference?

Clinical implications

* Do the results triangulate with other forms of evidence? Could a clinical trial be conducted to provide definitive evidence, as in the case of PCSKS
inhibitors?

# |farandomised clinical trialis not feasible (such as in the case of alcohol consumption and risk of heart disease) or unlikely to be conducted in
the short term (such as the case of lifestyle interventions to lower BMI and risk of heart disease), and there is existing evidence from multiple
Mendelian randomisation studies and other robust study designs that converge on a similar result and show consistency of association, this
information can be used to guide patient care; for example, advising weight loss to prevent heart disease or advising against moderate alcohaol
consumption to prevent cardiovascular disease



How to conduct MR
analysis

METHOD ARTICLE

Guidelines for performing Mendelian randomization

investigations: update for summer 2023 [version 3; peer
review: 2 approved]

Stephen Burgess':'12, George Davey Smith =34, Neil M. Davies':3.>7,
Frank Dudbridge?, Dipender Gill 2%, M. Maria Glymour??,
Fernando P. Hartwig'=3.11, Zoltan Kutalik'2-14, Michael V. Holmes 21516,

Cosetta Minelli‘=17, Jean V. Morrison'8, Wei Pan19, Caroline L. Relton34.20,
Evropi Theodoratou:21.22

1. If there are genetic variants having 2. If such variants are not available,
hiological relevance to the exposure, then consider initially performing a “liberal”
consider performing the MR analysis MR analysis using a less stringent choice
using these variants only, and perform of variants. If the estimate is null, then
appropriate sensitivity analyses. there is little evidence for a causal effect.

3. If the estimate from the initial analysis is non-null, then assess the robustness
of the finding using different approaches: stricter criteria for variant selection,
leave-one-out analyses, robust methods, positive/negative controls, subgroup

analyses, colocalization (for analyses based on single gene region).

What is the aim of the Mendelian randomization investigation? )
Y

To assess the causal role of an exposure
Priorities should be:
- validity of the instrumental variable assumptions
- precision and relevance of the gene—outcome associations

To evaluate the gquantitative impact of an intervention on the exposure
In addition to the above, extra priorities should be:
= how well the genetic variant proxies the intervention
- whether genetic analyses are conducted in a relevant population,
- linearity and homogeneity of relationships between variables
Mote: estimate typically represents impact of lifelong change in the exposure

( Should | perform a one- or a two-sample investigation? )
¥ ¥
One-sample Two-sample
Advantages: Concerns: Advantages:  Concerns:
- Harmonization - Weak - Power - Similarity of
- Subgroup analyses  instrument bias - Transparency  samples
- BUT difficult to find single relevant sample | - Easier practically

How to select genetic variants?
What sensitivity and supplementary analyses should | perform?

If there are genetic variants having biological relevance to the exposure...
... then consider performing an MR analysis using these variants anly,
Advantages:

- Instrumental variable assumptions more plausible
Relevance to intervention often more clear
Concerns:
- Low power - Results sensitive if locus is pleiotropic
Sensitivity analyses:
- Single locus: colocalization. Multiple loci: assess heterogeneity
- Consider positive and negative control outcomes

If such variants are not available...

... then consider performing an agnostic polygenic MR analysis.
Advantages: Concerns:

Can use robust methods - Pleiotropy is likely
Sensitivity analyses:
- Assess heterogeneity; statistical test and graphically (e.g. scatter plot)
- Perform a range of robust methods making different assumptions
- Check genetic associations with variables on pleiotropic pathways

Liberal and conservative choices of variants, leave-one-out analyses

Conduct relevant subgroup analysis




Database resources

Table 3 | Databases of genome-wide association study results

Number Integrated with

Data source Description of traits statistics package?
MR-Base A curated database of genome-wide Over 1000 Yes

association study results with

integrated R package for MR
PhenoScanner A curated database of genome-wide Over 500 Yes

association study results with

integrated R package for MR?’
GWAS catalog Searchable database of genome-wide Over 24 000 No

association study results*®

Table 2 | Publicly available data sources for two sample Mendelian randomisation studies

Consortium name

Description

Most recent sample size

BCAC* Breast cancer 256 123
CARDIOGRAMplusC4D? Coronary artery disease and myocardial infarction 184 305
CKDGen?® Chronic kidney disease 111666
DIAGRAM? Diabetes 159 208
FAGLE?® Antenatal and early life and childhood phenotypes 47 541
EGG?* Farly growth 153781
GIANT?® Height, BMI, and other adiposity traits 693 529
GLGC! Global lipids genetics consortium 331368
ISGC*? Stroke 84961
MAGIC?? Glucose and insulin related traits 224 459
PGCH - Psychiatric genetics, alcohol and tobacco, and other related traits >500000
SSGAC*® Educational attainment and wellbeing 293723




STROBE-MR

JAMA | Special Communication

Strengthening the Reporting of Observational Studies in Epidemiology
Using Mendelian Randomization

The STROBE-MR Statement

Veronika W. Skrivankova, PhD; Rebecca C. Richmond, PhD; Benjamin A. R. Woolf, MSc; James Yarmolinsky, PhD; Neil M. Davies, PhD;
Sonja A. Swanson, ScD; Tyler J. VanderWeele, PhD; Julian P. T. Higgins, PhD; Nicholas J. Timpson, PhD; Niki Dimou, PhD; Claudia Langenberg, PhD;

Robert M. Golub, MD; Elizabeth W. Loder, MD; Valentina Gallo, PhD; Anne Tybjaerg-Hansen, MD, DMSc; George Davey Smith, MD, DSc;
Matthias Egger, MD; J. Brent Richards, MD



STROBE-MR

Item No. Section Checklist item
Title and Abstract
1 Title and abstract Indicate mendelian randomization (MR) as the study’s design in the title and/or the abstract if that is a main purpose
of the study.
Introduction
2 Background Explain the scientific background and rationale for the reported study. What is the exposure? Is a potential causal
relationship between exposure and outcome plausible? Justify why MR is a helpful method to address the study
question.
3 Objectives State specific objectives clearly, including prespecified causal hypotheses (if any). State that MR is a method that,
under specific assumptions, intends to estimate causal effects.
Methods
4 Study design Present key elements of the study design early in the article. Consider including a table listing sources of data for all
and data sources phases of the study. For each data source contributing to the analysis, describe the following:
a Setting: Describe the study design and the underlying population, if possible. Describe the setting, locations, and
relevant dates, including periods of recruitment, exposure, follow-up, and data collection, when available.
b Participants: Report the eligibility criteria and the sources and methods of selection of participants. Report the
sample size and whether any power or sample size calculations were carried out prior to the main analysis.
C Describe measurement, quality control, and selection of genetic variants.
d For each exposure, outcome, and other relevant variables, describe methods of assessment and diagnostic criteria
for diseases.
o Provide details of ethics committee approval and participant informed consent, if relevant.
5 Assumptions Explicitly state the 3 core instrumental variable (V) assumptions for the main analysis (relevance, independence,
and exclusion restriction), as well assumptions for any additional or sensitivity analysis.
6 Statistical methods: Describe statistical methods and statistics used.
main analysis
a Describe how quantitative variables were handled in the analyses (ie, scale, units, model).
b Describe how genetic variants were handled in the analyses and, if applicable, how their weights were selected.
c Describe the MR estimator (eg, 2-stage least squares, Wald ratio) and related statistics. Detail the included
covariates and, in case of 2-sample MR, whether the same covariate set was used for adjustment in the 2 samples.
d Explain how missing data were addressed.
o If applicable, indicate how multiple testing was addressed.



STROBE-MR

Assessment of assumptions

Sensitivity analyses
and additional analyses

Software and
preregistration

a
b

Describe any methods or prior knowledge used to assess the assumptions or justify their validity.

Describe any sensitivity analyses or additional analyses performed (eqg, comparison of effect estimates from different
approaches, independent replication, bias analytic techniques, validation of instruments, simulations).

Name statistical software and package(s), including version and settings used.

State whether the study protocol and details were preregistered (as well as when and where).

Results
10

11

12

Descriptive data
a

Main results

Assessment
of assumptions

a
b

Report the numbers of individuals at each stage of included studies and reasons for exclusion. Consider use
of a flow diagram.

Report summary statistics for phenotypic exposure(s), outcome(s), and other relevant variables (eg, means, SDs,
proportions).

If the data sources include meta-analyses of previous studies, provide the assessments of heterogeneity across
these studies.

For 2-sample MR:
i. Provide justification of the similarity of the genetic variant-exposure associations between the exposure and
outcome samples.

ii. Provide information on the number of individuals who overlap between the exposure and outcome studies.

Report the associations between genetic variant and exposure and between genetic variant and outcome, preferably
on an interpretable scale.

Report MR estimates of the relationship between exposure and outcome and the measures of uncertainty from the
MR analysis, on an interpretable scale, such as odds ratio or relative risk per SD difference.

If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period.

Consider plots to visualize results (eg, forest plot, scatterplot of associations between genetic variants and outcome
vs between genetic variants and exposure).

Report the assessment of the validity of the assumptions.

Report any additional statistics (eq, assessments of heterogeneity across genetic variants, such as |2, Q statistic,
or E-value).




STROBE-MR

Item No. Section Checklist item
13 Sensitivity analyses
and additional analyses
a Report any sensitivity analyses to assess the robustness of the main results to violations of the assumptions.
b Report results from other sensitivity analyses or additional analyses.
C Report any assessment of the direction of the causal relationship (eg, bidirectional MR).
d When relevant, report and compare with estimates from non-MR analyses.
e Consider additional plots to visualize results (eg, leave-one-out analyses).
Discussion
14 Key results Summarize key results with reference to study objectives.
15 Limitations Discuss limitations of the study, taking into account the validity of the IV assumptions, other sources of potential
bias, and imprecision. Discuss both direction and magnitude of any potential bias and any efforts to address them.
16 Interpretation
a Meaning: Give a cautious overall interpretation of results in the context of their limitations and in comparison
with other studies.
b Mechanism: Discuss underlying biological mechanisms that could drive a potential causal relationship between the
investigated exposure and the outcome, and whether the gene-environment equivalence assumption is reasonable.
Use causal language carefully, clarifying that IV estimates may provide causal effects only under certain assumptions.
C Clinical relevance: Discuss whether the results have clinical or public policy relevance, and to what extent they
inform effect sizes of possible interventions.
17 Generalizability Discuss the generalizability of the study results (a) to other populations, (b) across other exposure periods/timings,

and (c) across other levels of exposure.

Other Information

18 Funding
19 Data and data sharing
20 Conflicts of interest

Describe sources of funding and the role of funders in the present study and, if applicable, sources of funding for the
databases and original study or studies on which the present study is based.

Provide the data used to perform all analyses or report where and how the data can be accessed, and reference these
sources in the article. Provide the statistical code needed to reproduce the results in the article or report whether
the code is publicly accessible and, if so, where.

All authors should declare all potential conflicts of interest.
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More analysis

CAUSAL COMPLEXITY

4 N ' ™
Genetic Understanding Thinking beyond GWAS to More GWAS, more phenotypes
associations genetic architecture understand disease etiology
Individual SNP effects Fine-mapping LD score regression MR-PheWAS
Polygenic risk scores Colocalization Mendelian randomization Two-step Mendelian randomization
Latent causal variable models Multivariable Mendelian randomization

- AN J J & J




ARTICLES

nature
https://doi.org/10.1038/541588-018-0311-9 gCIlCthS

Corrected: Author Correction

Genome-wide meta-analysis identifies new loci
and functional pathways influencing Alzheimer's
ARTICLES disease risk

https://doi.org,/10.1038/541593-018-0326-7

nature
Nneuroscience

Genome-wide meta-analysis of depression _
identifies 102 independent variants and highlights  naturegenetics
the importance of the prefrontal brain regions

Article https://doi.org/10.1038/541588-022-01286-7

Genome-wide meta-analysis identifies

93 risk loci and enables risk prediction
equivalent to monogenic forms of venous
thromboembolism




Thanks for listening!



	幻灯片 1: 孟德尔随机化
	幻灯片 2: Causal inference
	幻灯片 3: Causal inference
	幻灯片 4: Real-world evidence
	幻灯片 5: Outline 
	幻灯片 6: MR的基本概念和假设
	幻灯片 7: From RCT to MR
	幻灯片 8: RCT & MR
	幻灯片 9: RCT & MR
	幻灯片 10: MR from an IV perspective
	幻灯片 11: IV assumptions
	幻灯片 12: The 4th IV assumption: Point estimation
	幻灯片 13: 单样本和两样本MR估计方法
	幻灯片 14: 两种MR类型
	幻灯片 15: Wald ratio estimator
	幻灯片 16: TSLS/2SLS
	幻灯片 17: TSLS
	幻灯片 18: TSLS
	幻灯片 19: 其他单样本MR估计方法
	幻灯片 20: 单样本IV方法
	幻灯片 21: 单样本IV方法
	幻灯片 22: Two-sample methods
	幻灯片 23: IVW估计
	幻灯片 24: Comparison 
	幻灯片 25: Trend 
	幻灯片 26: Binary outcome
	幻灯片 27: Binary outcome
	幻灯片 28: MR设计的扩展
	幻灯片 29: Recall 
	幻灯片 30: Extension 
	幻灯片 31: Reciprocal MR: reverse causality
	幻灯片 32: Two-step MR: mediation effect
	幻灯片 33: Extension 
	幻灯片 34: 违背MR基本假设的情况及处理
	幻灯片 35: Recall the assumptions
	幻灯片 36: I. Relevance: weak instrument
	幻灯片 37: II. Exchangeability
	幻灯片 38: III. Exclusion restriction: invalid IV
	幻灯片 39: 处理多效性的方法
	幻灯片 40: 检验/识别多效性
	幻灯片 41: 处理多效性
	幻灯片 42: Recall: IVW
	幻灯片 43: From IVW to MR-Egger
	幻灯片 44: Median and mode estimator
	幻灯片 45: Regularization methods
	幻灯片 46: Sensitivity analysis
	幻灯片 47: Summary data methods for independent IV
	幻灯片 48: Other MR methods
	幻灯片 49: MR methods for summary data
	幻灯片 50: Software 
	幻灯片 51: MR研究的局限性
	幻灯片 52: Limitations 
	幻灯片 53: Winner’s curse
	幻灯片 54: Population stratification
	幻灯片 55: Gene-gene interaction 
	幻灯片 56: Gene-environment interaction
	幻灯片 57: Time-varying exposure
	幻灯片 58: Reverse causality
	幻灯片 59: Collider bias
	幻灯片 60: 三角证据 triangulation
	幻灯片 61: 如何开展MR研究
	幻灯片 62: As readers
	幻灯片 63: How to conduct MR  analysis
	幻灯片 64: Database resources
	幻灯片 65: STROBE-MR
	幻灯片 66: STROBE-MR
	幻灯片 67: STROBE-MR
	幻灯片 68: STROBE-MR
	幻灯片 69: 报告规范
	幻灯片 70: More analysis
	幻灯片 71: 案例分析
	幻灯片 72: Thanks for listening!

