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Genetic basis of human diseases

* Single major genes influencing rare Mendelian disorders

e Multiple genes (polygenetic) influencing common complex traits

* Omnigenic model: a genetic architecture of regulatory networks composed of
a small number of core genes that directly affect a trait but with a large
number of genes outside the core that indirectly affect the trait.
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Linkage di ilibri (LD)

Definition

If we consider 2 genetically linked variants, each having 2 alleles, we expect to observe 4 pairwise combinations of these alleles, or haplotypes. If the
alleles were independent or at linkage equilibrium, their frequencies should be the product of each allele frequency in the population. Likewise, for
n biallelic variants, we expect to see 2" haplotypes in the population. In fact, this random association of alleles is rarely observed, especially if the
variants are physically close. We rather observe preferential allelic associations (ie, haplotype frequencies deviate from those expected at linkage
equilibrium). The difference D between the observed and expected frequencies of a haplotype defines the LD of the 2 alleles on this haplotype. If
2 alleles are found together more often than expected, they are positively associated and their LD is positive. Conversely, the alternative
combinations of alleles are less frequent than expected with the same absolute LD value but negative.

There are different measures of LD. The most intuitive one for biallelic variants is their correlation estimated by their coefficient of determination r*
ranging between 0 and 1. The LD is “complete” when at least 1 haplotype is missing and the most extreme case of LD said “perfect” is when only
2 of the 4 haplotypes are observed, with an r* of 1. In the latter case, both variants are redundant such that the genotype at the second variant can

be imputed from the genotype at the first variant for any individual in the population. This has major consequences for genetic association studies
(see main text).

Forces shaping the LD are intimately connected to the history of the population: LD depends on when the variants appeared in the population and how
they evolved across the subsequent generations (see below):

1. Mutations/variations
Initially, when mutation creates a new allele at a locus near an established variant, there are only 3 haplotypes and therefore the LD is complete.
2. Meiotic recombination

Following mutation, the major force shaping the LD is meiotic recombination that creates the fourth haplotypes and therefore dissipates the LD. The

higher the number of generations since the mutation has appeared and the higher the recombination rate between 2 loci, the lower the LD between
their alleles. Thus distant loci are generally in lower LD. However, the recombination activity is not homogeneous along the genome: at a small scale,

hot-spots of recombination shape islands of LD or haplotype blocks where a smaller number of haplotypes than expected are observed in the
population. Their average size is ~20 kb and varies between populations. However, it is important to remind that 2 variants in the same haplotype
block are not always in LD and that, conversely, 2 variants may be in LD without being in the same haplotype block.

3. Demaographic and evolutionary forces

By influencing variant allele frequencies, these forces also strongly impact the LD. For example, in a growing population, the LD decreases by
increasing the number of recombinations. On the contrary, the genetic drift can fix some alleles, and thus the corresponding haplotypes, leading to

new LD patterns. Migrations and population admixture also modify allele frequencies and LD. In population genetics, the time of a migration can be
deduced from the LD decay. Recent positive selection can be detected with a higher LD around the selected variants. Epistatic interactions may also

be selected and keep alleles in LD even if they are distant. This explains why LD depends on the considered haplotypes with different patterns for
multi-allelic variants. For example, in the highly polymorphic human Major Histocompatibility Complex (MHC), LD may extend over long distances
for some specific ancestral haplotypes. Finally, as allele frequencies vary substantially worldwide, both the extent and strength of LD also differ
among populations.
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The genotypes of genetic
variants are physically
close together are not
independent as they tend
to be in linkage
disequilibrium.
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Overview of GWAS

e Genome-wide
association studies

* Post-GWAS analysis will
be discussed detailly.
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Data collection

Population-based GWAS

e Cohort study
e Case-control study: bias in control group

Family-based GWAS
Isolated population
Biobank

Population stratification & confounding

Table 2 | Biobanks and large population-based
studies with genetic and phenotype data available

for research

Data set

UK Biobank™

BioBank Japan*’

China Kadoorie Biobank***
Genes & Health”™
H3Africa’”"

BioMe™™”

TOPMed*

Million Veteran
Programme*"

‘All of Us’ initiative’”’
23andMe

Ancestry
Predominantly white British
Japanese

Chinese

British South Asian
Various African ancestries

Multiple ancestries (based
in New York)

Multiple ancestries (USA)
Multiple ancestries (USA)

Multiple ancestries (USA)
Multiple ancestries (USA)




Genotyping

* Genotyping
* Microarrays: includes common variants (tag SNPs)

* Next-generation sequencing: also includes rare variants
 Whole-genome sequencing (WGS)
* Whole-exome sequencing (WES)

e Common and rare variants

« Common Disease, Common Variant (CDCV): Cumulative effect of many
common, low penetrance variants

« Common Disease, Rare Variant (CDRV): Different single, rare, high penetrance
variants
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Genotyping

* GWAS using SNP
arrays versus whole-

genome sequencing
(WGS)
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Factor
Cost
Reliability

Genomic coverage

CWAS analysis

Other considerations

Suitable research
objectives

SNP arrays
Relatively inexpensive (~US$40 per sample)
Reliable, highly accurate technology

= Mainly restricted to common and low-frequency
variants, although imputation of rare variants
is increasingly accurate (ultra-rare variants,
however, can never be identified)

= Biased towards variants discovered in well-
studied or sequenced populations

Well-established analytical pipeline and tools for
data analysis

Custom genotyping arrays can be extremely
cost-effective

= Analysing known or candidate associations in
large cohorts

= Detecting low-frequency, common variant
associations in extremely large sample sizes
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WGS
Expensive (>U5%1,000 per sample)

Less mature and less accurate
technology

From low-frequency, common
variants to nearly all genetic variation
in the genome, depending on the
depth of sequencing

* Higher computational costs and
greater analytical complexity

* Eventually, larger multiple testing
burden when conducting single-
variant tests

* As all variation is ascertained,
fine-mapping is easier

* Greater costs to store, process,
analyse and interpret the resulting
data

* Detecting and fine-mapping rare
variants

* Detecting ultra-rare risk variants
when it becomes economically
viable to perform WG5S at avery
large scale




Quality control

* Filtering of bad SNPs
* Hardy-Weinberg equilibrium
* Genotype call rate
* Minor allele frequency: removing monomorphic variants

* Filtering of bad individuals

* Sex check: ensure that phenotypes are well matched with genetic data
(comparing self-reported sex versus sex based on X and Y chromosomes)

* Genotype call rate
* Sample call rate

* Heterozygosity and relatedness checks
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Imputation

e Using individual-level data: leverage LD information from a population
reference panel.

e Statistically phase individual genotypes (estimating whether genotyped
alleles derive from the maternal or paternal allele)

* Decide whether to use hard calls or weight for uncertainty
» Select an appropriate reference population panel
* Convert reference panel and target population into the same genomic build

* Check strand issues, resolve issues between different platforms, possibly
remove ambiguous SNPs

e Check for unusual minor allele frequencies and patterns of linkage
disequilibrium between reference panel and target data
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Reference population panel

e Commonly used
population
reference panels

Table 1| Commonly used population reference panels

Reference panel Number of Ancestry of reference Number of
reference samples samples variant sites
Icelandic reference panel 15,220 European (lcelandic) 31.1 million
HapMap Project phase 3 1011 Multi-ethnic 1.4 million
1000G phase 1 1,092 Multi-ethnic 28.9 million
1000G phase 3 2,504 Multi-ethnic 81.7 million
UK 10K Project 3,781 European 42.0 million
HRC 32470 Predominantly European  40.4 million
(includes the 10000
reference panel samples)
TOPMed® 62,784 Multi-ethnic 463.0 million

Indels
available

Yes
No
Yes
Yes
Yes
No

Yes

L

1000G, 1000 Genames; HRC, Haplotype Reference Consortium; indels, insertions or deletions; TOPMed, Trans-Omics for Precision

Medicine. “Figures are based on the latest status of the reference panel.
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Association testing
(Case-control)

* Allele counting to test for association

* Fisher’s exact test
* Pearson’s y? test
e Fisher’s Exact Test

e Continuous response: Armitage’s trend
test, ANOVA, t-test, etc.

* Models
e Allele:Gvs T
* Dominance: GG+GT vs TT
* Recessive: GG vs GT+TT

 Additive or co-dominant model: GG vs
GTvsTT

Odds ratio

* Genotype frequencies

GG GT TT Total
Cases ro ry ry R
Controls So S S5 S
Total No n, n, N
* Allele frequencies
G T Total
Cases 2R
Controls 2S5
Total 2No+n, ni+2n, 2N

Expected allele counts

G T
2R(2no+n1)/(2N)  2R(n+2n5)/(2N)
25(2ny+n,)/(2N)  25(n,+2n,)/(2N)




Association testing

* Regression models

* Linear or logistic regression models
depends on the phenotype (continuous or
binary)

* Covariates are included to account for
stratification and avoid confounding effects

* Control of population stratification: Genomic
principal components (PCs) as covariates
* Including an additional random effect term
(individual specific) to account for genetic
relatedness among individuals

generalized linear model (GLM)

9(p) = 225 B Xj +uG + > mPCy

linear mixed model (LMM)

Y=>32,iX;+uG+ >, vl +e,

Y~Wa+ X8, +g+ce€
g~ N(0,0%)

e~ N(0,021)

Let Y, be the phenotype for individual /
Y, = 0 for controls
Y,=1 for cases
Let X, be the genotype of individual / at a particular SNP
1T X =0
GT
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Association testing

e Other methods:

* Gene-based association analysis, especially for rare variants

* regressing the disease status or trait value on the principal components of the SNP
genotypes

* Kernel-based methods such as SKAT

* use summary statistics from individual SNPs (marginal p-values without individual
genotype data) to derive gene-based tests: VEGAS and GATES

» Pathway-based (gene set) analysis

* Topology-based analysis: MAGMA

* Incorporating single-nucleotide polymorphism annotations
 Joint GWAS analysis from multiple traits

* SNP-SNP and SNP-environment interactions
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Association testing: accounting for false
discovery

* A stringent multiple-testing threshold
* There are millions of associations to be tested
* Bonferroni testing threshold of p < 5 x 1078
* Depends on population size and minor allele frequency
* Winner’s curse
* The effect sizes of newly discovered alleles tend to be overestimated

* Comparing effect sizes between discovery and independent
replication cohorts.
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Association testing: GWAS summary
statistics

Effect size at SNP, 6+ i
‘ B; = cor (Genotypesy,, Phenotype)
- . ]
* The results of association testing: 21 g
GWAS summary statistics i h
 Effect sizes | '
e Standard errors g

o
Posd =
N

. . . . ] Genotype
 Linage disequilibrium (LD) matrix
z-scores _E]‘_ o ﬁi. o _L_;Nj_ ~ MVN (0, V)
s.e(B,) s.e(B) s.e(By)
SNP LD (V) SNP, SNP; SNPy

SNP,

SNP,\“\/

Nature Reviews | Genetics
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Association testing: visualizing

* Manhattan plots
* Quantile-quantile plots
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[mputation of summary statistics

* Imputation using summary
statistics and LD information
from a population reference
panel

Box 1| Conditional association and imputation from summary statistics

Let X be an N xM matrix of genotypes, standardized to mean 0 and unit variance, and Y
be an N x 1 vector of standardized trait values, where M is the number of single
nucleotide polymorphisms at the locus and N is the number of samples. Under a
standard linear model, Y = Xf + €. Let V be an M x M linkage disequilibrium (LD) matrix
of pairwise LD; Vis equal to X"X ifindividual-level data are available but can otherwise
be estimated from a population reference sample (with or without regularization).

Conditional association using LD reference data

We estimate the joint effects of all SNPs using least-squares as B = VIXTY with

var () = GfV'l,where af is the residual variance in the joint analysis. However, in a
standard genome-wide association study, each SNP is marginally tested one at a time,
which can be expressed in matrix form as 8, = D' X"Y with var (f,,) = 05, D", where D
is the (nearly constant) diagonal matrix of Vand ¢, is the residual variance in the
marginal analysis. It follows that

.é: v DBM
var (ﬁ]l = af‘i/'l

Summary statistic imputation using LD reference data
Let

__Pu_ XY
s.e.(By) (N)

be a vector of z-scores (estimated effect sizes divided by their standard errors) obtained
by marginally testing each SNP one at a time. Under the null hypothesis of no
association, Z~N(0, V). Let Z, and Z_ partition the vector Z into T typed SNPs
and M —T untyped SNPs, and let V,, (covariances among typed SNPs), V;; (covariances
among untyped SNPs), and V,, (covariances among typed and untyped SNPs) partition
the matrix accordingly. It follows that Z,|Z, ~ N(V;, vilz, V= Vi V;1v1). The mean and
variance of the conditional distribution can be used to impute summary association
statistics at untyped SNPs.
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Resources of GWAS summary statistics

Table 3 | Databases of GWAS summary statistics

e Databases

Database
GWAS Catalog'”

GeneAtlas®
Pan UKEBB
GWAS Atlas®”

FinnGen results

dbGAP

OpenGWAS database
Pheweb.jp

Content

GWAS summary statistics and GWAS lead SNPs reported in
GWAS papers

UK Biobank GWAS summary statistics
UK Biobank GWAS summary statistics

Collection of publicly available GWAS summary statistics
with follow-up in silico analysis

GWAS summary statistics released from FinnGen, a project
that collected biological samples from many sources in
Finland

Public depository of National Institutes of Health-funded
genomics data including GWAS summary statistics

GWAS summary data sets

GWAS summary statistics of Biobank Japan and
cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF"". GWAS, genome-wide

association studies; SNP, single-nucleotide polymorphism.
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Resources of GWAS summary statistics

Table 1 | Publicly available summary association statistics*

Trait N URL Ref.
. . Age at menarche 127,884 http://www.reprogen.org/ 119
i G WAS S u m m a ry Stat|St I CS Alzheimer disease 54,162 http://www.pasteur-lille.fr/en/recherche/u744/igap/igap downleoad.ph 120

Bone mineral density 53,236 - jefos ?q=c - e 121

fo r Va rl O u S t ra ItS Body mass index 122,033  http://www.broadinstitute.org/collaboration/giant/index.ph 122

GIANT consortium_data_files

Body mass index* 322,154 http://www.broadinstitute.org/collaboration/giant/index.php/ g
GIANT consortium_data_files

Coronary artery disease 77,210  http://www.cardiogramplusc4d.org/ 123
Crohn's disease 20,883 http://www.ibdgenetics.org/downloads.html 124
Crohn's disease® 51,874 http://www.ibdgenetics.org/downloads.html 125
Depressive symptoms 161,460 http://www.thessgac.org/data 126
Ever smoked 74,035 http://mwww.med.unc.edu/pgc/downloads/ 127
Fasting glucose 58,074  http://www.magicinvestigators.org/downloads/ 128
HbA,_(glycated 46,368  http://www.magicinvestigators.org/downloads/ 129
haemoglobin)

High-density lipoprotein 97,749  http://www.broadinstitute.org/m ubs/lipids2010 130
High-density lipoprotein* 188,577  http://csg.sph.umich.edu//abecasis/public/lipids2013/ 131
Height 131,547  http://www.broadinstitute.org/collaboration/giant/index.php/ 132

GIANT consortium data files

Height* 253,288  http://www.broadinstitute.org/collaboration/giant/index.php/ 8
GIANT consortium data files

Hip circumference 213,038 http://portals.broadinstitute.org/collaboration/giant/index.php/ 133
GIANT consortium data files

Irritable bowel syndrome 34,652 124

(Crohn's disease or

i A ) ulcerative colitis)
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Resources of GWAS summary statistics

Irritable bowel syndrome 65,643  http://www.ibdgenetics.org/downloads.html 125
(Crohn’s disease or
ulcerative colitis)*

° G W AS summa ry St atlstlc S Low-density lipoprotein 93,354 httDi/fwwwbroadlinstitute.orq/mlclmf’nub%;’li:I:;icli52010f’ 130

Low-density lipoprotein® 188,577 131

fo r Va ri O u S t ra its Neuroticism 170,911 http://www.thessgac.org/data 126

Rheumatoid arthritis 38,242 134

(Europeans)

Rheumatoid arthritis 58,284 134

(Europeans)¥

Rheumatoid arthritis 22,515 http://plaza.umin.ac.jp/~yokada/datasource/software.htm 134

(East Asians)

Schizophrenia 70,100  http://www.med.unc.edu/pgec/downloads/ 135

Subjective well-being 298,420 http://www.thessgac.org/data 126

Triglycerides 94,461  http://www.broadinstitute.org/mpg/pubs/lipids2010/ 130

Triglycerides* 188,577 http://csg.sph.umich.edu//abecasis/public/lipids2013/ 131

Type 2 diabetes 60,786  http://diagram-consortium.org/ 136

Ulcerative colitis 27,432 http://www.ibdgenetics.org/downloads.html 124

Ulcerative colitis* 47,746 http://www.ibdgenetics.org/downloads.html 125

Waist circumference 232,101 http://portals.broadinstitute.org/collaboration/giant/index.php/ 133
GIANT consortium data files

Waist/hip ratio 212,248 http://portals.broadinstitute.org/collaboration/giant/index.php/ 133
GIANT consortium data files

Years of education 328,917 http://www.thessgac.org/data 126

*We provide a selected list of publicly available summary statistics from genome-wide association studies with sample sizes of at
least 20,000. A more complete list can be found in REF. 137. *Includes specialty genotyping array data; not suitable for analysis
using linkage disequilibrium score regression and its extensions.
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Meta-analysis & Mega-analysis

 Combining data from different studies
e Summary association statistics: meta-analysis
* Individual-level data: mega-analysis

* Fixed effects meta-analysis
* Assuming that true effect size are the same across studies

 Random effects meta-analysis
* Assuming that true effect size may differ across studies

* Subset-based meta-analysis

» Evaluating all possible combinations of non-null models for association,
selecting the strongest association and adjusting for the multiple comparisons.
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Post-GWAS analysis

* Fine-mapping

* Functional inference
* Determining the affected gene
* Determining regulatory pathways and cellular effects

* Polygenicity analysis of complex traits
* Polygenic risk prediction
* Understanding trait genetic architecture

e Cross-trait analysis
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Fine-mapping

* To identify the causal variant(s) that is driving a GWAS association
signal
* Many non-causal variants are significantly associated with a trait of interest
owing to linkage disequilibrium.
* The most significant association may be non-causal.

* SNP to gene mapping
* Find credible variants that modulate the expression patterns and functions of
causal genes.
* SNP to biology mapping

* Find credible variants that contribute to the development of the target
phenotype.
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Fine-mapping

e Using posterior probabilities

* Prioritize the variants based on the strength of marginal association statistics
* Conditional association analysis

e Conditional association analysis

* The association between a SNP and a trait is evaluated after conditioning on

the top SNP at a locus (including the lead variant as a covariate in genotype-
phenotype regression model)

» Stepwise conditional analysis: forward stepwise selection

* Using individual-level data or only using summary statistics with LD
information from population reference panel
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Fine-mapping

* Fine-mapping strategies

* Heuristic fine-mapping approaches
* Filter SNPs according to pairwise
correlation (r?) with the lead SNP

* Pairwise LD among SNPs within
haplotypes

* Penalized regression models
e Bayesian methods

* Posterior inclusion probability (PIP)

e The sum of the posteriors over all models
that include SNP j as causal

Credible sets

0
* Credible set based on SNP PIPs
E Multi-region fine-mapping with annotation
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Bayesian fine-mapping

* The effect size of the causal SNP on a trait (multiple regression R?)
* The sample size (N)

* Assume one causal SNP and m non causal SNPs

* All SNPs are equally correlated with correlation p

* The posterior probability for a causal SNP can be expressed as
PTc

pre + it i PTi - exp{—(1 — p)NR?/(1 — R?)}

post, =
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Bayesian fine-mapping procedure

Table 1 | Commaondy used Bayesian fine-mapping softeare

Software Tralt types Input Uses Maximum  Input Causal Main cutput Refs
covarlates® summary  number annotation?  search
statistics? of cauzal
variants*
BIMABAM v1.0 qt.and binany Mo 2] Fined Mo Exhonistive  Bayes factor .
mvBIMBEAMv1.00 mige P Vs 1 Mo Exhaustive  Bayes factar e
SKFTEST w2 54-betad gt binary, mge and Mo L] 1 Mo Exhonistiwe  Bayes factor "
multinenial
plMASS w009 aqt and binany Mo 5] Computed Mo MCMC Bayes factor and PIP o
BvSwi111 Binary s fdo Computed  Yes MCMC Bayes factorand PP "=
FM-CTL qt Mo fdo Compined e MCMC Bayves factar and PP -
[P w1000 qt Yes Vs 1, fed and  Yes Eshanistive  Bayesfactar and PIP .
computed
Fine-mapping Mulrzinomial Wies 2] Computed Ko Groedy FiP =
Trincule Muslzincemial Yes o Computed Ko Giroedy Bayes factor and PIP =
BasesFM Binary Yoz Fda 0 hia MCMC FiIP .
ABF aqt and bimany Wies s 1 Mo Evhonistiwe  Bayes factor =
fgwas .16 qt.and binand Mo Ves 1 Yiess Eshonistive  Bayesfactorand PIP e
CAVIARA=CAVIAR aqt and ey Mo Vs Fined Mo Eshanistive  pprobabiliny ]
confidence set and
FIP
PAIMTOR vi.0 qt. binary® and mage Mo Ves Fleedand  Yes Exhonistive  Bayesfactorand FIF "5
computed amd MCKIC
CAVIAREF w21 qt and binany* Mo Ves Fined s Exhausitve  Bayesfacoor and FIF e
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Fine-mapping

* Integrating functional annotation data

 Jointly estimate functional enrichment and update posterior probabilities of
causality using functional annotations.

* Help to understand polygenic architectures by identifying tissue-specific
functional annotations.

* Protein-coding & non-protein-coding annotations
* Gene expressions

* Trans-ethic fine-mapping
* Meta-analysis
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Functional inference

* To identify

* The immediate effects of causal variants
(on protein or enhancer function)

* The affected gene or genes in the locus
that mediate the disease association

* The downstream network or pathway
effects that lead to changes in cellular
and physiological function

* The relevant tissue, cell type and cell
state for all these effects

a What are the associated loci?
100

-Iogw(P)

oL

1 ' 3 5 7 o 11
Chromosome

b What are the likely causal variants?

@ —sl12345

15 19 23

Chromosome position

c What are the epigenomic effects of variants?

Gene A SNPs Gene B Gene C
]
ATAC-seq
H3K27ac
d What are the target genes in the locus?
L —rs12345
S —
=] ==
£ =
= =
> ]
—
F 5
= D
(-]
A AG oG Chromosome position
rsl2345 genotype
Gene A rs12345 Gene B Gene C
— |
e What are the affected pathways?
(]
(]
L -
L o —
L




* Prokaryotes

Polycistronicoperon

Functional analysjg R N

Enhancer
Jsilencer Operator Promoter 5'UTR ORF ORF Jsilencer
Stop Stop
, o - I R P
* Determine the affected gene o e
rotein coding region Protein coding region
RBS RBST

R G EME |
loci (eQTLs)

* molecular quantitative trait loci Frow . .

(molQTLs) analysis  Eukaryotes

* expression quantitative trait .

Regulatory sequence Regulatory sequence
Enhancer
/silencer Promoter 5'UTR Open reading frame /silencer
Proximal Core Start Stop

DNA e [ ---—[ -~

Transcription BN BN

_Intron_ Intron

O S

Protein coding region
Poly-A tail

5'cap l
s—raurull 1

MRNA  post-transcription
modification

Translation

Prtei n
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Molecular Quantitative Trait

* The idea of expression
phenotypes (eQTL) can s S
be extended to non- " oown " oome
coding genes, to post- ﬂfo ﬂio
transcriptional RNA locus A is a molQTL | /_\lo‘cusB is nota molQTL
modifications and to the >
post-translational level,

introducing the general Y |

»
Molecular Quantitative Trait
S

o
o

B I > >
concept of molecular S A
ars = =
: > e
Coding gene of Prr_-lr;--r -r-'w

a molecular

AP "; F 7 “E quantitative trait
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molQTL

. . (A) Cis molQTL (B) Trans molQTL
* cis-acting

. | Trait Trait
* the regulation of ?
genes within 1 Mb S
* trans-acting
® moIQTLS affectln g Vertical Horizontal Different causal varniants Vertical Horizontal
genes further away e ~ Trai [Tea]
or on different {Donam ¢
chromosomes O Gene expression
@® Genetic variant
\_ Y,

Horizontal Different causal variants

Trends in Molecular Medicine
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molQTL

* The most credible GWAS TSI I
variants are prioritized by e
statistical methods of WOV WV

colocalization with -
M & A
m O I QT LS ' molQTLs

* Differential molecular traits |}i/

are filtered by the presence
of molQTLs regulating - )

molQTLs X
them. .Q m X
* Modulation of a Mendelian | ' L
trait by a molQTL. = e

(B)

patients

controls

differential molecular quantitative traits

—_— =————— 3 =
common variants | | Il | | Il Il I Here e r i

genes %\=v‘ “:A Q ﬁ.

molQTLs
& 5 Case-control as t
A X
mutant
wildtype
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TWAS

* Transcriptome-wide association
studies

* Transcriptome reference data are used +OTL data
to build a linear predictor for gene

Expression (E) Genotypes (G)

T

G

T

&

A

Cc

T

G

expression, typically using SNPs from 1 B
Mb local region around the gene with : =

T

G

A

(]

&
regularized effect sizes.

* The predictor is applied to summary
genome-wide association z-scores, and
gene-trait association z-scores are
computed, testing the null model of no
association between a gene and a trait.

Linear genetic
predictor

E=GBon +€

Summary association Imputed
statistics gene-trait
association

z-scores (Z)

105123 -
.~ QTL
@ y ﬁOTLVBOTL
SNP LD (V)

Nature Reviews | Genetics
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a True pleiotropy b True comorbidity

PheWAS N

* phenome-wide |
association studies False ;

pleiotropy _~
Allele Allcicil~ = = = = ===
¢ Confounded phenotype relationship d False phenotype distinction
Comorbidity
Comorbidity . i
Phenotype 1~ = = = = - - Phenotype 2 7 X
Y Phenotype 1 = Phenotype 2
|
1
: True biological phenotype
: A
1
False "
pleiotropy _# Allele
Ollolc M= === = ===~

Nature Reviews | Genetics
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Polygenic risk prediction

* Polygenic risk scores (PRS): weighted sum
scores of risk alleles

a)
b)

C)

d)

Obtain GWAS summary statistics of each SNP:
pruning & thresholding

Individuals’ genotype data are referenced
against GWAS summary statistics

Sum up the effect sizes of all alleles for each
individual

Linear regression on PRS to measure the effect
of PRS on the outcome
Hj : Phenotype ~ covariates + e

H; : Phenotype ~ PRS + covariates + e

(1) GWAS summary statistics

Allele A C T
Effect +1.5 -0.5 +2.0
SNP2 SNP3
@ Genotype data
SNP2 SNP3
Individual 1 AT CG T
Individual 2 TA GG GT
Individual 3 TT CC GT
Individual 4 TT CC GG
@) Polygenic risk score
Individual1 1.5 = 0.5 + 4.0
Individual 2 1.5 - 0.0 + 2.0
Individual3 0.0 - 1.0 + 2.0
Individual4 0.0 - 1.0 + 0.0
@) PRS distribution
Individual 4 Individual 3 Individual 2

PRS

A

-1.5
CcC
CA
CA
AA
0.0 = 5.0
1.5 = 2.0
1.5 = -0.5
3.0 = -4.0
Individual 1

/7 N\ormroJ Ul T



Polygenic risk prediction

Fit effect sizes of all markers
simultaneously using best linear
unbiased prediction (BLUP) methods

e Assume infinitesimal (Gaussian)
architectures in which all markers are
causal

* Require individual-level training data

* Restrict markers to those below a p-
value threshold or estimate posterior
mean causal effect sizes under a
point-normal prior

B &V

SHANGHAI JIAO TONG UNIVERSITY

Box 3 | Polygenic risk prediction using summary versus individual-level data

Suppose that polygenic risk prediction for a quantitative trait is conducted using a training cohort with N unrelated
samples, using M unlinked markers with single nuclectide polymorphism (SNP) heritability’ equal to h *. We initially
consider two polygenic risk prediction methods that assume infinitesimal (Gaussian) architectures: polygenic risk scores
computed using marginal effects at all markers with no P value thresholding (PRS,), and fitting effect sizes of all markers
simultaneously via best linear unbiased prediction (BLUP). We note that PRS,, requires only summary statistics from the

training cohort, whereas BLUP requires individual-level data. Prediction accuracy (coefficient of determination; R?) for
each method is given by®1%
2

Rfvﬂf =
s 0.54
s e M

Nh: BLUP
. PRS,,
. :

2 0.4
(] - RéLUP]

R, =
BLUP 1 . ﬂ
Nhé
These equations can naturally be extended to
linked markers (using the effective number of unlinked
markers'®) and case—control traits (using observed-scale

SNP heritability'*). The relative advantage of BLUP over

PRS,, is small when prediction R is small in absolute

0.3

Prediction R?

0.2 4
terms, but grows larger when prediction R? is larger. This
effect is illustrated in the figure, which shows prediction
R? at various training sample sizes based on M=60,000
unlinked markers and a SNP heritability of h *=0.5. These
results generalize to non-infinitesimal extensions of
polygenic risk scores™”” and BLUP**%; in the latter case,

0.1+

the noise reduction from fitting all markers simultaneously 0.0 T T T T T ]
remains equal to 1-R?, corresponding to an increase in 3.0 35 +0 45 5.0 55 6.0

training sample size of 1/(1-R?). Training sample size (log,; N)
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[nterring polygenic architectures

* Polygenic architectures of complex traits
* Alarge number of causal variants with small effects

* Determining the genetic architecture of a trait involves
* The number of causal variants
* Their corresponding effect sizes
* Allele frequencies

* Heritability: the proportion of variation in the trait that can be explained by

genetic variation in the population

* Broad-sense heritability (H?): the fraction of phenotypic variation explained by both

additive and dominance effects

 Narrow-sense heritability (h?): the fraction of phenotypic variation explained by additive

effects only

N
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Inferring polygenic architectures: heritability

* missing heritability: the observation that
association signals from early GWAS results
often only explain a small proportion of overall
heritability

 residual maximum likelihood (REML) estimator

» chip-based heritability: it does not account for
variants that cannot be captured by the SNPs
on the genotyping platform; it is likely mis-
specified since it is unlikely that all the SNPs
will contribute to the observed trait

Y =X + &,

}33
B~N (0, —I) ,
TH
e ~N(0, (1 — KD,

Y are the standardized trait values, X is the
standardized genotype matrix, f are the
genetic effects, h? is the overall heritability,
and m is the number of SNPs.

Vv U et . , Pt
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Inferring polygenic architectures: heritability

* LD score regression
2
* Regressing )(Zstatistics((sﬁ) ) against linkage
disequilibrium (LD) scoreslfor each SNP.

* LD scores are computed as sums of squared EZ 1G] =NIGIM+Nav1 =32,
correlation of each SNP with all SNPs including o=
itself. (parameters: window size, 7% cutoff,
excluded singletons (MAF)) N: sample size

e Can distinguish between polygenicity and l; - the LD Score of variant j
Confou_ndmg' M: the number of SNPs

* Extension:

- . h? /M : the average heritability explained per SNP
 Stratified LD score regression

: : a : the contribution of confounding biases
* cross-trait LD score regression

% z) / / A . i ,/’\?rf’:\ qr_rﬁA.
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Cross-trait analysis

e Correlation
* Genetic correlation / cross-phenotype (CP) associations

* The distinguish between a CP association and (biological) pleiotropy is
important to define.

e Causality
e Mendelian randomization

> »
n “F P —— : M)
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Genetic correlations between traits

* cross-trait LD score regression

52
Y, =XB+e, B~ N([}, —11), e ~N(0,(1 =),
7

52
Y, =Zy+8, y~ N([}, —21) . 5~N(0,(1=#)1),
7

E(By") = &I, ps is the genetic covariance between traits Y:and Y-
E((“l (@) ) N mmpg 3 no shared samples between the two GWAS
T M 7
Pg . :
corr = hoh. genetic correlation

y: -~ z BN " ; ;\: ‘ﬁx nﬁ e
B z / / A . 5 ,/’\}r/’: o
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Pleiotropy

* Horizontal pleiotropy / Biological pleiotropy
* A genetic variant or gene that has a direct biological influence on more than
one phenotypic trait.
* Vertical pleiotropy / Mediated pleiotropy

* One phenotype is itself causally related to a second phenotype so that a
variant associated with the first phenotype is indirectly associated with the
second.

* Spurious pleiotropy / LD-induced pleiotropy

* Two different variants that are in linkage disequilibrium each influence one of
two traits.

) YAELXAAY - —~
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Pleiotropy

a b c
Biological pleiotropy: Biological pleiotropy: different causal Biological pleiotropy: different causal
single causal variant variants colocalizing in same gene and variants colocalizing the same gene

tagged by the same genetic variant

e A CP association can be 5 B . b 3 3

observed at different : : E Z | ‘
levels

* Biological pleiotropy . ¢

: . : Mediated pleiotropy Spurious pleiotropy: design artefact Spurious pleiotropy:
 Allelic level: a single el VaMBHESTn dfierent gepis

causal variant is related Misclassification or

ascertainment bias

to multiple phenotypes O it > P P ’
* Gene or region level: ; : | ‘
multiple variants in the

Region of strong LD

same gene or region are
associated with different

phenotypes

\ ‘,;é,“:‘ﬁxtg o
B | VZe B, “
1&"'44‘?;& SHANGHA]]IAOTD:J::UNIVERS?’:Y /-\\(‘\QJ?L? \JTLJ 1 L

@ Cene * Causal variant (generally not observed) ® Genetic variant identified in GWASs

Nature Reviews | Genetics




Pleiotropy

* Spurious pleiotropy

e Defects in studies
e Ascertainment bias

* Phenotypic
misclassification

e Shared controls
* Population stratification
e Batch effects

* Linkage disequilibrium

Biological pleiotropy:
single causal variant

P P,

b c

Biological pleiotropy: different causal Biological pleiotropy: different causal
variants colocalizing in same gene and variants colocalizing the same gene
tagged by the same genetic variant

P, P, P, P,

d
Mediated pleiotropy

p, ———> P,

2 f

Spurious pleiotropy: design artefact Spurious pleiotropy:
causal variants in different genes

Misclassification or
ascertainment bias
P, < » P, P, P,

Region of strong LD

@ Cene * Causal variant (generally not observed)

® Genetic variant identified in GWASs

Nature Reviews | Genetics
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Biological meanings of pleiotropy

* At its essence, pleiotropy implies a mapping from one thing at the
genetic level to multiple things at a phenotypic level.

* Molecular gene pleiotropy
* The question is about the number of functions a molecular gene has.
* These functions can be defined not only genetically, but also biochemically.

* Developmental pleiotropy
* Mutations rather than molecular genes are the relevant units.

 Selectional pleiotropy

* The question is about the number of separate components of fitness a
mutation affects.

* A key feature of selectional pleiotropy is that traits are defined by the action
of sﬁelectlon and not by the intrinsic attributes of the organism.

-
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Biological meanings of pleiotropy

Does the gene perform What phenotypes are affected? How do phenaotypes
multiple biochemical Examples might be seed size ( () affect independent
functions? These could and leaf shape (@p). An asterisk fitness components? Bar
° . include interactions with  indicates different phenotype plots indicate the fitness
* When considering the relevance g ik

Genotype Gene Functions Phenotypes Fitness

of data to each of these classes of 12 2 L
Gl A v/ " L‘_

pleiotropy, four issues are critical. o X X (2 LB
* Are we discussing the genotype- o A £ e s

phenotype map or the genotype- ’ K P

fitness map? o A ;v | & 15
* Are we discussing a molecular gene ’ v e M-
or a mutation? o : :g ;
* How are we enumerating traits? |
* What do we mean when we say that Bl o 3 b
a gene or m-utation “affects” o y * ]
multiple traits? a X < L

A }— ; x 4 ~‘£ TRENDS in Genefics
] 7 I s A\‘rﬂ ‘3 v " [
A // N\ TSJT
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Detecting CP associations

e Univariate approaches
 Combine the associations across various phenotypes

* Multivariate approaches

 Jointly analyze more than one phenotype in a unified framework and test for
the association of multiple phenotypes with a genetic variant.

* Multivariate regression framework: generalized estimating equations (GEE),
log-linear model, ordinal regression

* Bayesian framework

* Dimension reduction: principal components analysis, canonical correlation
analysis

e - " > Ly \(ﬂ ‘, o it
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Detecting CP associations

Table 2 | Univariate approaches for detecting CP associations

. . Input Explicit Allows effect  Types of Accommodates Combine Identify Genetic  Refs
® U n I Va r I a te test of CP heterogeneity phenotype (such overlapping data across subset of variant
association as continuous or  subjects multiple associated wversus
a ro a C h e S categorical) studies phenotypes region

p p Fisher Pvalue Mo Yes Any Mo Yes No Variant 56
CPMA Pvalue Yes Yes Any Mo Yes No Variant 14
Fixed Effect Mo Mo Same type; need Mo Yes No Variant 54,57,
effects estimate to standardize 55l
meta- continuous
analysis phenotypes
Random Effect No Moderate level: Sametypeineed  No Yes No Variant 5457,
effects estimate not opposite to standardize 53l
meta- effects continuous
analysis phenotypes
Subset- Effect No Yes Sametype:need Mo offer Yes Yes Variant 59
based estimate to standardize extension to
meta- continuous account for some
analysis phenotypes overlap
Extensions Effect Mo Yes Any Yes; all subjects Mo? No Variant 6162
to O'Brien  estimate overlap*
TATES Pvalue Mo Yes Any Yes; all subjects Mo No Variant 63

overlap®

PRIMe P value No Yes Any Yes Yes No Region 64

CP erozs-phenstype: CPFMA, crozs-phenotype meta-analysis; PRIMe, Pleiotropy Regional [dentification Method: TATES, Trait-based Association Test that uses
Extended Simesz. *Can accommaodate value: mizzing completely at random. *Can accommedate values miszing completely at random and blockwize miszingness.
5Can combine across multiple studies if all subjects have nen-missing values for all phenotypes; TATES can accommeodate situations inwhich a subset of studies

" ;é > ﬁx R have mizsing values for a subszet -::afthephenot}-pe;.”Reference: are given for meta-analytical methods typically used in genome-wide aszociation studies.
o A ALILNZF
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Distinguish CP effects

* Fine mapping
* to distinguish biological and spurious pleiotropy

* |[dentifying mediated pleiotropy

* The association between the variant and the first phenotype can be tested by
adjusting or stratifying the first phenotype.

* May be biased at the presence of confounding factors.
* Mendelian randomization

-
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Mendelian randomization

* The assumptions of MR
* Relevance
* Ignorability / Exchangability / Exogeneity
* Exclusion restriction

* Challenges , Y Sy
 Weak IV: polygenicity g@f_,--—\@;{{'
* Invalid IV: pleiotropy e

* Vertical pleiotropy: causality
* Horizon pleiotropy: directional (unbalanced) or indirectional (balanced) — confounding
e Spurious pleiotropy

o 8 e
N \ vz R (S i 1
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[gnorability / Exchangability

* Ignorability means that the potential outcomes are independent with
the treatment assignments (observed exposures).

Y(a) L Aforalla

* Exchangability means that the expected outcome in the non-treated
group would have been the same as the outcome in the treated
group if they had received the treatment.

* Conditional ignorability / exchangability:
Y(a) L A|X foralla
* It is satisfied by randomization (in RCT), matching or exogeneity.

P V5 E 7 /\sﬁ . —
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Mendelian randomization with summary
statistics

® IVW- b a S e d m et h O d S Table 1| Estimators for Mendelian randomization using summary statistics
Method Implementation Limitations Refs

¢ A Weighted Iinear regreSSiOn Of IVW-based methods The VW method involves a weighted linear Unlike the other methods ]

regression of SNP effects on the outcome on SNP - described below, IVW cannot

S N P Effe ct SONn t h e ou tco me on effects on the risk factor, without an intercept account for directional

term. The regression slope is equivalent to a {unbalanced) pleiotropy©.
H weighted average of the ratio estimates (BOX 2] Balanced pleiotropic
S N P Effe Cts on t h eris k fa Cto r based on the precision of the causal estimate for effects? can be accounted
each SNP used as an instrument*t, VW methods for in random-effects VW

are more powerful than other methods (for maodels (by allowing for

i |VI R E gge r example, MR-Egger) heterogeneity) if the InSIDE

assumption® holds true

° A N i nte rce pt te rm to d ea I Wit h Methods based on Egger  Linear regression with an intercept term using Egger regression is less “

regression inverse variance weights™®. MR-Eqgaer regression  efficient and powerful than
. : : . provides consistent estimates even if all genetic other methods because it
d Ire Ct IONa | h orizonad I p I el Ot ro py instrumental variables are invalid under the allows for heterogeneity due
InSIDE assumption®. This analysis is robust to to pleiotropy. It requires the

° InSIDE assumption: pleiotropy directional (unbalanced) pleiotropy®. The intercept  InSIDE assumption®

can be interpreted as the average pleiotropic
effect across the genetic instrumental variables.

Effe CtS are i N d e pe N d e nt Of t h e Significance of the intercept term indicates the

presence of unbalanced pleiotropy or violation of

effects on the exposure. the InSIDE assumptiont

s IM\F=rsutdl 1L




Mendelian randomization with summary

statistics

Median-based methods

* Median-based methods

e Calculate the ratio causal
estimate for each instrument
and then take the median

* Assume that at least 50% IVs or
IVs representing at least 50%
weights are valid

* Mode-based methods

* ZEMPA assumption: the largest
subset of instruments with the
same ratio estimate comprises
the valid instruments

Mode-based methods

Multiple methods

Median-based methods allow some (but not all)
instrumental variables to be invalid instruments.
The median estimate is obtained by first calculating
the ratio causal estimate for each instrumental
variable and then taking their median. In the
unweighted version, each genetic instrumental
variable receives equal weight in the analysis.

In the weighted version, the median is calculated
using the inverse variance weights®. Median-based
methods are more robust to directional pleiotropy
than IVW and are more robust to individual genetic
variants with outlying causal estimates than [VW
and MRE-Egger regression

These methods allow the majority of the genetic
instrumental variables to be invalid instruments
under the ZEMPA assumption'. In the unweighted
version of the mode estimate, each genetic
instrumental variable receives equal weight

in the analysis. In the weighted version, the

mode is calculated using the inverse variance
weightst. Mode-based methods are more robust
to directional pleiotropy than VW and more
powerful than MR-Egger regression

In practice, it is recommended to apply each of these methods to assess the

These methods assume
that at least 50% of the
instrumental variables
are valid instruments
{unweighted median
estimates) or that the
instrumental variables
that represent 50% of the
weight in the analysis are
valid instruments (weighted
median estimates)

The methods assume ENLEN

that the largest number

of instrumental variable
estimates comes from

valid instruments (ZEMPA
assumption’), that is, that the
invalid instrumental variables
have heterogeneous effect
estimates. They have less
power than VW and median
methods

robustness of the assumptions relevant for the different estimators, including
the IVW estimator (all instruments are valid), the Egger estimator (all instruments
may be invalid if the InSIDE assumption® is verified) and the median and modal
estimators (a subset of genetic variants are valid instruments)
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Summary

Process of GWAS Post-GWAS analysis

* Data collection * Fine-mapping

* Genotyping * Functional analysis

* Quality control * Risk prediction

* Imputation * Determining polygenetic

* Association testing architecture

* Cross-trait analysis & causal
inference

e - " > Ly \(ﬂ ‘, o it
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Prospect

* Extending the phenotypes studied in GWAS

* Large prospective cohort studies with longitudinally measured clinical, demographic,
lifestyle and environmental exposure data are needed

* Electronic health data, behavioral health-tracking data, genetic data

* Expansion in scale at multiple levels
 Sample size

* Population studied: multi-ethic, admixed groups, isolated (founder and highly
consanguineous populations)

* Methods and study design used:

* autosomal additive model - recessive, dominant, over-dominant, multiplicative, parent-of-
origin-specific & X-linked inheritance models

* Gene-gene & gene-environment interactions

e Study designs: case-control, case-only, intervention & hypothesis-driven
* Genomic-region based or gene-based association test

e Bayesian analyses, machine learning, etc.

/{';j‘?-leterogeneous traits S oo
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Prospect

* GWAS performed to
date represent the
tip of the iceberg.

Additive model in
GWAS analysis

R

Easy-to-measure
phenotypes

}

Different study designs

Diverse ethnic groups
and populations

Alternative inheritance
models in GWAS analysis Larger, more ethnically

‘ diverse reference panels

AA  AG GG

GxG and GxE
interactions

A4

Deep phenotypes and
composite traits

Gene-based or region-
based association tests

Extremely large
sample sizes (>1 million)
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Challenges of GWAS

* Methodological challenges
* Population stratification: spurious or biased associations
Fine-mapping: complex structure of genes
Polygenicity
Multiple testing burden
Causality
* Unsuccessful in detecting epitasis

* Ethical challenges
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Benefits & limitations

The bright side The dark side

Identification of novel
SNV-trait associations

Discovery of novel biological
mechanisms

Diverse clinical applications

Insight into ethnic variation

of complex traits

Relevant to low-frequency, \

rare variants —
Identification of novel monogenic /

and oligogenic disease genes ..
Relevant to the study of / = L.
structural variation pistasis
Multiple applications

Disease prediction

True signals

Population stratification

Ultra-rare mutations

beyond gene identification ]
Causal variants or genes

Straightforward GWAS generation,
management and analysis
Easy-to-share and

.. | ;é & ﬁ/t A ublicly available data
o VA AL NT P y m
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Software

* Open access tools for
each stage of GWAS
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Table 1| Open access tools that can be applied at each stage of GWAS

Software
Quality control

PLINK/PLINKZ
(REFX)

RICOPILI
SMARTPCA

FlashPCA™®
Imputation

IMPUTEZ
{REFsé‘:i:J":T]

BEAGLE®**
MACH/Minimac®*

Association

PLINK/PLINKZ
(REF.™)

SNPTEST®®
GEMMA®
SAIGE™*
BOLT-LMM#1

REGENIE>®
BGENIE™

fastGWA?

Use

Can be used for many key steps in quality control, including filtering of bad SNPs (based on
deviation from Hardy—Weinberg equilibrium, genotyping call rate and minor allele frequency) and
bad individuals (based on sex check, genotyping call rate, sample call rate, heterozygosity and
relatedness checks)

Quality control of raw genetic data and summary statistics used for input in meta-analyses

Principal component analysis of raw genotyping data; provides individual-level principal
components that can be used to correct for population stratification

Similar to SMARTPCA; faster and more scalable with increasing sample sizes

Imputation of missing genotypes against an existing reference panel matched for ancestry;
tends to use more memory than other imputation tools

Imputation of missing genotypes against an existing reference panel matched for ancestry

Imputation of missing genotypes against an existing reference panel matched for ancestry;
Minimac includes pre-phasing, which speeds up imputation time

Most widely known tool for conducting genetic associations

Genetic association testing; works well with IMPUTE2
Genetic association testing based on linear mixed models
Genetic association for binary phenotypes; analyses very large samples (N > 100,000)

Genetic association testing based on the BOLT-LMM algorithm for mixed model association
testing and the BOLT-REML algorithm for variance components analysis (partitioning of SNP-based
heritability and estimation of genetic correlations)

Genetic association testing; analyses very large samples (N >100,000); can assess multiple
phenotypes at once; fast and memory efficient

Genetic association for continuous phenotypes; analyses very large samples (N> 100,000);
custom-made for the UK Biobank BGENw1.2 file format

VAR

Mixed-model genetic association analysis
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Statistical fine-mapping

S Oft \/ \/ are CAVIAR! Estimates the probability of each variant in a locus to be causal based on the observed pattern

of Pvalues and the level of linkage disequilibrium; allows for an arbitrary number of causal variants

PAINTOR®* Statistical fine-mapping using GWAS summary statistics and functional genomic data to prioritize
likely causal variants
SuSIE®* Statistical fine-mapping using GWAS summary statistics and linkage disequilibrium information
® O p e N a Cce SS to O | S fo r from a reference panel; based on a Bayesian modification of a forward selection model
FINEMAP® Statistical fine-mapping using GWAS summary statistics as input; calculates effect sizes and

e a C h Sta ge Of G WAS heritability owing to likely causal SNPs

Meta-analysis

GWAMA?# Fixed and random effects meta-analysis; allows the specification of different genetic models
METAL* Weighted meta-analysis using GWAS summary statistics as input

Variant annotation

VEP'> Functional annotation of genetic variants with their effect on genes, transcripts and protein

sequence as well as requlatory regions

ANNOVAR™ Functional annotation of genetic variants with their effect on genes, transcripts and protein
sequence as well as requlatory regions

FUMA® Functional annotation of genetic variants with their effect on genes, transcripts and protein
sequence as well as requlatory regions; includes chromatin interaction information and integrates
and visualizes all output

Enrichment or gene-set analysis

MAGMA?* Gene-based and gene-set analysis using competitive testing with a regression framework; allows
testing of custom gene sets and includes options for conditional and interaction testing between
gene sets

DEPICT** Systematic prioritization of genes and assessment of enriched pathways using predicted gene
functions

LDSCH* Partitioned SNP-based heritability analyses showing enrichment in sets of functionally related SNPs
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Software

* Open access tools for
each stage of GWAS
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Table 1 (cont.) | Open access tools that can be applied at each stage of GWAS

Software Use

QTL analysis

OTLlTools™* Molecular QTL discovery and analysis; uses raw genomic (sequence) data as input

Genetic correlations

LDSC Assessment of genetic correlation between phenotypes using summary statistics as input;
has various other functions, including partitioned SNP-based heritability and assessment of
selection bias

GCTAY Assessment of genetic correlation between phenotypes using raw genotypic data as input

SumHer*** Assessment of genetic correlation between phenotypes using summary statistics as input; has various

superGNOWVA™
p-HESS#
LAWA®
GenomicSEM®**
Causality

Mendelian
randomization®®

PRS analysis
PRScs!#

LDPred s/
LDPred-2 [REF )

SBayesR™
PRSice'
TWAS
FUSION™

PrediXcan'™

SMR

other functions, including partitioned SNP-based heritability and assessment of selection bias
Assessment of local genetic correlations using GWAS summary statistics

Assessment of local SNP-based heritability and genetic correlations using GWAS summary statistics
Assessment of local multivariate genetic correlations using GWAS summary statistics

Assessment of multivariate genetic correlations based on GWAS summary statistics

Assessment of causal relation between traits based on genetic overlap, using GWAS summary
statistics as input.

Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

PRS analysis using a P value thresholding and clumping approach

Performing TWAS by predicting functional/molecular phenotypes based on reference data;
uses OWAS summary statistics as input

Prioritizing likely causal genes based on transcription data; uses GWAS summary statistics as input

Testing whether SNP-trait associations are mediated by gene expression levels using a Mendelian
randomization approach

GWAMA, genome-wide association meta-analysis; GWAS, genome-wide association studies; PRS, polygenic risk score;
QTL, gquantitative trait locus: SNP, single-nucleotide polymorphism; TWAS, transcriptome-wide association studies.
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Term/approach

Objective

Selected resources and tools

(Genome annotations

Software

Prioritize genes, regions, and variants based

on their potential functions

Protein-coding region: PolyPhen

Sequence conservation: GERP, phyloP

Supervised methods: CADD, GWAVA,
DeltaSVM, DeepSea

Unsupervised methods: ChromHM, Segway,
GenoCanyon, Eigen

Tissue-specific annotations: GenoSkyline,
FUN-LDA

Integration of disease information: Phevor,
Phen-Gen, PINES

Integrated resources: RegulomeDB, ANNOVAR

Meta-analysis

Integrate results from different studies

Stata, METAL

Pleiotropic analysis

Integrate information from genetically
correlated traits

GPA, MTAG

Multlocus or gene-based
analysis

Integrate information from different markers

PCA, MAGMA, SKAT, VEGAS, GATES

Pathway- and network-
based analysis

Integrate information from multiple related
genes

MAGMA, ToppGene, MRF-based analysis

Fine mapping

Localize functional genes and variants

PAINTOR, CAVIAR, FINEMAP

TWAS

Integrate information from eQTL studies

PrediXcan, FUSION, UTMOST

Heritability

Estimate the overall genetic contribution
from a set of markers to a trait

GCTA, LDSC, GNOVA

Genetic correlation

Estimate the genetic correlations between
traits for a set of markers

GCTA, LDSC, GNOVA

Polygenic risk score

Predict disease risk based on genetic
information

P+T, LDPred, AnnoPred, PleioPred, PRS-CS

Mendelian randomization

Infer the causal relationship among traits

IVW, MR-Egger
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Any Questions?
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