Foundation models for
DNA sequences

Based on research internship at Shanghai Al lab.
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Two perspectives for DNA sequences

* Nucleotides as Pixels in images
* CNN based model
* Long sequences as input (~10kb-~mb)
e Supervised (Mainly)
» Task-driven: training on specific sequences (Mainly)

* Nucleotides as Words in natural languages
* Transformer based (pretrained) model
» Short sequences as input (~*100bp-~kb)

 Self-supervised: auto-encoding (mask language modeling), auto-regressive,
encoder-decoder

* General embedding: pretraining (on the whole genome) — finetune, few-shot,
zero-shot



CNN based models

* DeepSEA (Nature Genetics, 2015)

e predict large-scale chromatin-
Brofiling data, including 690 TF
inding profiles for 160 different
TFs, 125 DHS profiles and 104
histone mark profiles

* Each training sample consists of a
1,000-bp sequence centered on
each 200-bp bin with the label for
all 919 chromatin features; a
chromatin feature was labeled 1 if
more than half of the 200-bp bin is
in the peak region and 0 otherwise.

* noncoding-variant (especially rare
variant) effect prediction

Cutput;
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prediction

Cutput:
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Output:
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CNN based models

* Expecto (Nature Genetics, 2018)

* predicted the epigenomic features
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CNN based models

* Sei (Nature Genetics, 2022)

 takes as input a 4-kb length sequence and predicts the probabilities of 21,907 cis-
regulatory targets (chromatin profiles across >1,300 cell lines and tissues) at the

center position
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CNN based models

* Sei (Nature Genetics,
2022)

e Sequence classes provide
a global classification and
quantification of
sequence and variant
effects based on diverse
regulatory activities, such
as cell type-specific
enhancer functions.
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CNN based models

* Basset (Genome Research, 2016)

* trained Basset on a compendium
of accessible genomic sites
mapped in 164 cell types by
DNase-seq

e the input data to training for
each site include its 600-bp DNA
sequence and a binary vector to
indicate the presence of a
significant peak in each of the
164 cell types (binary prediction)
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CNN based mOdels Genome Sequence, 131 kb
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CNN based models

* Dilated
Convolutions:
InCrease
Receptive Filed

Standard Convolution (I=1) Dilated Convolution (I=2)



CNN based models

e Basenji2 (PLOS Computational Biology, 2020)

* The neural network takes as input a 131,072 bp sequence, transforms its
representation with iterated convolution layers, and makes predictions in
128bp windows across the sequence for the normalized signal derived
from many datasets

e training data consisting of 6,956 human and mouse quantitative
sequencing assay signal tracks from the ENCODE and FANTOM consortiums
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CNN based models

* Enformer (Nature Genetics, 2021)

* Enformer takes as input one-hot-
encoded of length 196,608 bp and
predicts 5,313 genomic tracks for the
human genome and 1,643 tracks for
the mouse genome, each of length 896
corresponding to 114,688 bp
aggregated into 128-bp bins.

* Self-attention after convolution:
tokenized by convolution
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CNN based models

e Xpresso (Cell Reports, 2020)

* a deep convolutional neural
network that jointly models
promoter sequences and
features associated with
MRNA stability to predict
steady-state mRNA levels.

* The = 10 kilobase
sequence centered at the
TSS was extracted as the
putative promoter region to
consider.

Neural network architecture tuning and model training
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P(A)
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« GPN (PNAS 2023)

[ Classification layer ]

o Pre-tralneq Network (GPN), d é:rggteedxé?r?é -_ 1 R—
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genome-wide variant effects C__ d ;Nmm N
through unsupervised t
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Training: T Variant effect prediction:
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Transformer based models

* Token embedding:
* Single nucleotide: e.g. one-hot

* k-mer (overlap/non-overlap)
* BPE

* Position embedding:
* absolute position
* ALIBi
 Model architecture and pretraining tasks

 Transformer

* Auto-encoding: BERT-like (Mask language modeling)
e Auto-regressive: GPT-like (Generative)

e others



Transformer

* Transformer

 Encoder: multi-head self-
attention

e Decoder: multi-head masked
self-attention, multi-head
encoder-decoder cross-
attention
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Attention
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BERT, & GPT g
* Encoder-only i
* BERT: mask language Ui
model (predicts masked Trantomer Bock
words based on the
surrounding context) ) Encoding|>%
J e
* DECOder'Only 110M Parameters ,'
* GPT: causal language
model (predicts the

next word in a 4 blus AL
sequence) © © 6 0 _JL 60 6 0 © O 0O O O

* Encoder-decoder
* BART




Supervised Pipeline

° ° P Label
Pretrain-finetune e [ HA
retrain i — '_’_'_-;l‘_;;;‘ ( — 1 Bird °*
] ‘./*/‘—' Bike
P
I | I
4 A 4
— [ BERT ] /,,/»/ 1o
Self-supervised Finetune ﬁ | :‘H-'"-:;;‘ME — 1 Dog )
Learning * Masked token prediction // 1 & A
Pre-train ( Next sentence prediction)

Self-Supervised Pipeline

Fine-tune o7 % : R
Model for Model for Model for 5 i “H
Task 1 Task 2 Task 3 o
I I |
Downstream Tasks * The tasks we care A -
« We have a little bit labeled data. (|- e
Finetune ﬁ .‘-”.--;'i"L/ § g : .’_639';
I K

/ LCabe!

[



Transformer based models

 DNABERT (Bioinformatics, 2021)

* to capture global and
transferrable understanding of
genomic DNA sequences based
on up and downstream
nucleotide contexts.

* Overlapped k-mer, absolute
position embedding, mask
language model (MLM)

 Max input: 512 bp

Classification result of Classification results of

(b) original sequence each masked token

\ eeeeeee ion /

emmmting Lt |[ba | [Tt ] [Tl ] [Tl ] e[ ] [ ] [Pl ] o | [T ] [Th |
El’lo?iltc:r?allg | Ey || Ex || E3 | Eq H Es |"'| E17||Eis|lEu”Ezn||En”Ezzl
+
Em‘:’::;ing [ Eiast || Ence | | Esca || Ecnc | [ Engr | oo Ecrr | [Ervase] | Epansd [Eounsid | Ecas | [ Eisen
t Feed to the Embedding layer
[CLS] A A A A - [MASK] [MASK] [MASK] CAG [SEP]
59:5::“ ? Mask (Only in pre=training)
[CLS] A A CAC  ACT e A CAG [SEP]
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Transformer based models

* Nucleotide
Transformer (bioRxiv,
2023)

* pretraining (a)
finetuning (b).

sequence
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6mer, mask language
model (MLM)
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Transformer based models

Position embeddin

DNABERT-2 (ICLR 2024)
* Token: Byte Pair Encoding (BPE)
: Attention

with Linear Biases (ALiBi)

Flash Attention

e Parameter-Efficient Tuning:
Low-Rank Adaptation (LoRA)

* replace the Relu activation

function with GEGLU

* Pretraining on genomics of

multiple species
* Max length: 3 kb

Overlapped
Sequence Token 1 Token 2
A A — A A
;"""-.Er'l-ti'elx_.' leaked -,
A+ A A [MASK]
AITICIG + A [MASK] A

» Fartially Leaked ¢

Token 3
A

A
A

Non-Overlapped

Sequence 1 ACAATAATAATAATAA

Sequence 2 AATAATAATAATAA
Tokens Token IDs
kmer ACAATA ATAATA ATAA [520, 264, 271, 4103]
AATAA TAATAA TAA [2068, 1044 1075]
Ours A CAA TAATAATAATAA [5, 27, 1769, 72]
- Al TAATAATAATAA [2? 1769, T72]

Figure 1: Illustration of the drawbacks of k-mer tokenization. In the overlapping setting, informa-
tion about a masked token is leaked by its adjacent tokens, while in the non-overlapping setting,
adding/deleting one nucleotide base leads to a dramatic change in the tokenized sequence.

Iteration

o

1
2
3

AA

A A
A A

A A

Corpus Vocabulary
ACTATATA {A,1,C,G}
A AT AT A {A,1,C,GTA}
ACTA TA TA {A,,C,G,IA,AC)
A ATATA .

Figure 2: Illustration of the BPE vocabulary con-
structions.



Parameter-Efficient Tuning (PEFT)

e Adapter tuning - : |
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[ Hidder!ﬁtates.l I [’ @U
L\ T Multi-Head w X




Transformer based models

GENA-LM (bioRxiv,
2023)

. o F train} ottt e Promoter activity prediction

ﬁ SercljeS Of modelsd or pretraining For finetuning 5 =

ased on BERT an LM Head ] Dmm} £
Blgblrd _ | task Head g Promoter [R&O&
BPE tokenization Prediction of enhancer

. activity in Drosophila cells

sparse attention o
mechanism - : oS
Max input: : e
approxim ate Iy 4.5 """{’:‘A""‘:’-""‘: Prediction of chromatin profiles
kb (512 to.kens with L g
full attention) and are Toenier :
36 kb (4096 tokens — —— 5

with sparse
attention). i

Splice sites annotation

Prediction of polyadenylation site
strength



Transformer based models

* BigBird (NeurlPS, 2020): From S
Sparse Attention w B
Mechanism " ey

* Long sequences R =

L]
:IZI O
o & o O 0
O O [
- I__J . l L =
B [1 M - O |l
{a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with r = 2, (b) sliding window attention with w = 3 (c) global

attention with ¢ = 2. (d) the combined BIGBIRD model.
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d. Tokens used in DNAGPT

| (ouscer| | (D H )
: Description: Description: : Dascription:

DA L los: Used to indicate the ] Used to indicate the
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i / ‘Bovine' | A - o
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Transformer based
models

« DNAGPT (bioRxiv, 2023)

* DNA token: non-overlapped k-
mers
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Transformer based models

* GLM (generalized language model): Autoregressive Blank Infifilling

(ACL, 2022)
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Mixture-of-Experts (MoE)

Add + Normalize
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~
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More Parameters

Figure 2: Illustration of a Switch Transformer encoder block. We replace the dense feed
forward network (FFN) layer present in the Transformer with a sparse Switch
FFN layer (light blue). The layer operates independently on the tokens in the
sequence. We diagram two tokens (z; = “More” and xry = “Parameters” below)
being routed (solid lines) across four FFN experts, where the router independently
routes each token. The switch FFN layer returns the output of the selected FFN
multiplied by the router gate value (dotted-line).
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LLM beyond transformer

DNA Sequence
Length Warm-up

* HyenaDNA (NeurlPS, i
2023) -

* Long sequences: max 1 %E.gn;;g‘ Gode 2L
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 Mamba (arXiv, 2023)

* Selective SSM: based on S4 (Structured State Spaces for Sequence

Modeling)

Selective State Space Model
with Hardware-aware State Expansion
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Sefection Mechanism

Figure 1: (Overview.) Structured SSMs independently map each ch 1 (e.g. D = 5) of an input x to output y through a higher
dimensional latent state h (e.g. N = 4). Prior SSMs avoid materializing this large effective state (DN, times batch size B and sequence
length L) through clever alternate computation paths requiring time-invariance: the (A, A, B, C) parameters are constant across
time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to

only materialize the expanded states in more efficient levels of the GPU memory hierarchy.

Linear
projection

E Sequence
transformation

Nonlinearity

(activation or
/ multiplication)

H3 ® Gated MLP > Mamba

Figure 3: (Architecture.) Our simplified block design combines the H3 block, which is the basis of most SSM architectures, with
the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block
homogenously. Compared to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to
the MLP block, Mamba adds an SSM to the main branch. For o we use the SiLU / Swish activation (Hendrycks and Gimpel 2016;
Ramachandran, Zoph, and Quoc V Le 2017).
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