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Abstract
Mendelian randomization is a powerful method for inferring causal relationships. However, obtaining suitable genetic 
instrumental variables is often challenging due to gene interaction, linkage, and pleiotropy. We propose Bayesian network-
based Mendelian randomization (BNMR), a Bayesian causal learning and inference framework using individual-level data. 
BNMR employs the random graph forest, an ensemble Bayesian network structural learning process, to prioritize candidate 
genetic variants and select appropriate instrumental variables, and then obtains a pleiotropy-robust estimate by incorporat-
ing a shrinkage prior in the Bayesian framework. Simulations demonstrate BNMR can efficiently reduce the false-positive 
discoveries in variant selection, and outperforms existing MR methods in terms of accuracy and statistical power in effect 
estimation. With application to the UK Biobank, BNMR exhibits its capacity in handling modern genomic data, and reveals 
the causal relationships from hematological traits to blood pressures and psychiatric disorders. Its effectiveness in handling 
complex genetic structures and modern genomic data highlights the potential to facilitate real-world evidence studies, mak-
ing it a promising tool for advancing our understanding of causal mechanisms.

Introduction

Identifying genuine causality is crucial to understanding 
physiological processes and discovering therapeutic tar-
gets, but it is also a tricky issue. Randomized controlled 
trials (RCTs) are usually regarded as the golden standard 
for causal inference but are restricted due to methodologi-
cal, ethical, and economic concerns. Mendelian randomi-
zation (MR) is a promising approach to estimating causal 
effects using genetic variants as instrumental variables (IVs) 
(Sanderson et al. 2022). In general, MR analysis relies on 
three core assumptions (Fig. 1a): (i) relevance: a reliable 
correlation exists between the instrument and exposure; 
(ii) exogeneity or exchangeability: the instrument is inde-
pendent with any confounders between the exposure and 
outcome ( Z ⟂⟂ U ); and (iii) exclusion restriction: the instru-
ment should affect the outcome only through the exposure 
( Z ⟂⟂ Y|X,U).

Unfortunately, the rigorous assumptions are often vio-
lated (Fig. 1b), making it challenging to identify appropriate 
genetic instruments. First, although genome-wide associa-
tion studies (GWAS) have identified numerous risk loci, in 
particular single nucleotide polymorphisms (SNPs), the 
effect on a polygenic complex trait is usually small, leading 
to weak-instrument bias (Davies et al. 2015). The multiple 

 *	 Zhangsheng Yu 
	 yuzhangsheng@sjtu.edu.cn

 *	 Yue Zhang 
	 yue.zhang@sjtu.edu.cn

	 Jianle Sun 
	 sjl-2017@sjtu.edu.cn

	 Jie Zhou 
	 jie.zhou@sjtu.edu.cn

	 Yuqiao Gong 
	 gyq123@sjtu.edu.cn

	 Chongchen Pang 
	 pangchongchen@sjtu.edu.cn

	 Yanran Ma 
	 qiyumyr@sjtu.edu.cn

	 Jian Zhao 
	 zhaoj@sustech.edu.cn

1	 Department of Bioinformatics and Biostatistics, Shanghai 
Jiao Tong University, Shanghai, China

2	 School of Public Health and Emergency Management, 
Southern University of Science and Technology, Shenzhen, 
China

3	 MRC Integrative Epidemiology Unit, University of Bristol, 
Bristol, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-024-02640-x&domain=pdf


	 Human Genetics

testing burdens, ‘winner’s curse’, linkage disequilibrium 
(LD), and population stratification increase the risk of 
false-positive signals in GWAS (Tam et al. 2019). It can 
be improved by applying multiple instruments (Dudbridge 
2021), whereas correlated instruments will also lead to 
unstable estimates and introduce additional genetic con-
foundings when including non-causal variants (Gkatzionis 
et al. 2023). Proposed strategies such as LD stepwise prun-
ing (Yang et al. 2012), principal components analysis (PCA) 
(Burgess et al. 2017), and penalization aim to extract a suit-
able number of independent instruments from a large set of 

correlated weak variants, but confront criticism on robust-
ness (Gkatzionis et al. 2022).

Another problem is that many IVs are actually invalid 
due to horizontal pleiotropy (a variant affects the outcome 
via alternative pathways other than the exposure of inter-
est). Gene interactions, such as LD and epistasis, can also 
violate exclusion restrictions analogous to pleiotropy. For 
individual-level data, lasso-type methods like sisVIVE 
(Kang et al. 2016) and post-adaptive Lasso (Windmeijer 
et al. 2019) help to control the influence of the pleiotropic 
effect. Recent approaches such as TSHT (Guo et al. 2018) 

Fig. 1   The overview of BNMR. a The three core assumptions of IV. 
b The problems in current MR. Weak IVs are primarily due to the 
small individual contribution of a single locus to the trait and the low 
statistical power of GWAS, as well as the presence of linkage and 
interaction effects, leading to numerous false-positive discoveries. 
Invalid IVs are mainly caused by horizontal pleiotropy and linkage 
disequilibrium, which break the exclusion restriction assumption. c 
Correlated horizontal pleiotropy induced by gene interactions. ZD is 
a pleiotropic variants with independent effect on X and Y, and ZI is 

associated with ZD . The causal pathway IV→ X → Y  and horizontal 
pleiotropic pathway IV→ Y  will be correlated when ZI is selected as 
IV. d The BNMR model. In the learning stage, we leverage the ran-
dom graph forest to prioritize variants from a large interacting set and 
select variants with a true effect on the exposure as instruments. In 
the inference stage, we impose shrinkage prior on the Bayesian MR 
model to obtain a pleiotropy-robust estimate. e Notations used in the 
BNMR model
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and CIIV (Windmeijer et al. 2021) mitigate pleiotropy by 
identifying valid instruments from candidate sets.

The above approaches relying on many implausible 
assumptions are tricky to model sophisticated real genetic 
patterns. In particular, due to complex gene interactions 
(GxG), incorporating non-causal variants as IVs not only 
leads to unstable estimates and impacts statistical power but 
also may introduce GxG-induced correlated pleiotropy, vio-
lating the Instrument strength independent of direct effect 
(InSIDE) assumption that many methods for correcting plei-
otropy rely on (Fig. 1c). Causal diagram model provides an 
alternative way to represent the underlying causal relation-
ships (Nogueira et al. 2022). With causal diagrams, machine 
learning techniques like the causal Bayesian network (BN) 
are currently applied to identify genetic interactions and 
causal variants (Lyu et al. 2021). They will also be a profit-
able complement to conventional MR (Howey et al. 2020; 
Amar et al. 2021).

In this paper, we propose a two-stage Bayesian network-
based Mendelian randomization (BNMR) approach by inte-
grating causal discovery and inference (Fig. 1d). We aim 
to tackle correlated weak instruments in learning stage and 
cope with pleiotropy in inference stage. Using the random 
graph forest (RGF), an ensemble approach comprised of 
a series of BN structure learning processes, we prioritize 
variants with effects that are small and interacting and iden-
tify variants with direct effect on exposure as instruments. 
Then we estimate the causal effects via the Bayesian MR 
framework with a shrinkage prior to cope with potential 
horizontal pleiotropy (Berzuini et al. 2020). We demonstrate 
that BNMR is superior to conventional approaches in both 
instrument selection and effect estimation via simulations. 
With application to the UK BioBank, we examine causal 
pathways from hematological parameters to blood pressures 
and psychiatric disorders, bringing new biological insights.

Methods

Overview of the BNMR model

BNMR is a two-stage MR framework using individual-level 
data. In the learning stage, we propose RGF to select vari-
ants with reliable relevance from a large number of corre-
lated weak instruments. We utilize BNs to characterize the 
complex conditional probability relationships and partition 
the variant set Z into three subsets according to their rela-
tionships with the exposure of interest X (DIE partition),

We use notations in calligraphic font to represent the variant 
set, bold font to represent the vector of genotypes, and Italic 

(1)Z = ZD ∪ ZI ∪ ZE.

capital letter to represent single genotype. Variants in ZD 
directly affect the exposure, variants in ZI indirectly affect 
the exposure via gene interaction or linkage, i.e., variants 
in ZI and X are d-separated by variants in ZD ( ZZZI ⟂⟂ X|ZZZD ), 
while variants in ZE do not affect the exposure ( ZZZE ⟂⟂ X ). 
The three subsets are distinguished via BN under the causal 
Markov, faithfulness, and sufficiency assumptions (Nogueira 
et al. 2022), and only ZD can be parents of X in the causal 
graph.

In the inference stage, we model the potential horizontal 
pleiotropy explicitly. Since quantitative traits are determined 
by both genetic and environmental factors, assuming linear-
ity and no interaction, we have

and

where ��� and ��� represent corresponding effect size on X and Y. 
Variants ZD ∈ ZD affect the outcome Y through two different 
pathways: with the mediation of exposure X ( ZZZD

���
⟶X

�
⟶Y ), 

the causal pathway of interest, and via direct pathway or 
through other mediators other than X ( ZZZD

���
⟶Y  ), known 

as (horizontal) pleiotropy (Pingault et al. 2018). Under the 
assumption that both pathways are independent (the InSIDE 
assumption) (Pingault et al. 2018), we have

where � is the causal effect of X on Y, while ��� represents the 
pleiotropic effects. By introducing the correlation matrix RRR 
between ZZZD and ZZZI,

we can rewrite Eqs. (2) and (3) as

where �
0
= �

0
+ ���T

I
RRR
0
+ ���T

E
ZZZ
E
− ��

0
 , �̃̃�̃� = ��� +RRR��� I  , and 

�̃Y = ���T
I
���R + �Y − ��X . �X and �̃Y are correlated, but are both 

independent with ZZZD . Actually, only a subset of variants in 
ZD needs to be included as IVs, and consequently, variants in 
ZD are required to be identified with high precision. We then 
impose a shrinkage prior on nuisance parameters �̃̃�̃�  to make 
� identifiable (Berzuini et al. 2020). Details on the derivation 
can be found in Supplementary Note SN1.

BN structure learning in the random graph forest

To reduce the computational complexity of structure learning 
and assess confidence of each edge, we propose RGF, inspired 
by the random forest. In RGF, r sub-graphs are created using 

(2)X = �0 + ���TZZZD + �X ,

(3)Y = �0 + ���T
D
ZZZD + ���T

I
ZZZI + ���T

E
ZZZE + �Y ,

(4)���D = ���� + ���,

(5)ZZZI = RRR0 +RRRZZZD + ���R,

(6)
X = �0 + ���TZZZD + �X ,

Y = �0 + �X + �̃̃�̃�TZZZD + �̃Y ,
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bootstrapping or subsampling, in which ns of n individuals and 
ps of p variants are sampled in each sub-graph. Consequently, 
we boil down the process of DIE partitioning to the structure 
learning of a series of causal BNs.

Since variants are reasons of traits naturally, we can sim-
plify structure learning to graph skeleton determination. We 
identify ZD by scanning the variants directly adjacent to the 
exposure in each graph and calculating the adjacency score 
(the frequency of the presence of Z − X edge in all sub-graphs) 
for each variant, which is the confidence of the variant-expo-
sure relevance in the average causal graph. Variants with 
higher adjacency scores are at a higher confidence level to be 
identified as ZD ∈ ZD . We can select a specified number of 
lead variants or variants with scores higher than a given thresh-
old �

∗ps

p
 as IVs.

Various algorithms are proposed for BN structure learn-
ing. Scored-based approaches ascertain the optimal network 
by exhaustively or heuristically exploring candidate graphs 
and maximizing the network score, while constraint-based 
approaches leverage a sequence of conditional independ-
ence tests to establish the edge constraints between nodes and 
subsequently refine the directions (Nogueira et al. 2022). We 
implement score-based approaches including Hill-Climbing 
(hc) and Tabu Search (tabu), constrained-based approaches 
including stable PC (pc.stable), Incremental Association 
(iamb), and Grow-Shrink (gs), as well as hybrid learning meth-
ods including Max-Min Hill-Climbing (mmhc) and Restricted 
Maximization (rsmax2). All these methods are implemented 
using the R package bnlearn.

Bayesian MR estimation with a shrinkage prior

We specify model (6) under the Bayesian framework. 
The total error term �X and �̃Y can be decomposed into 
a confounding-related term � and a completely random 
term � , i.e., �(�X) = �(�̃Y ) = 0 , Var(�X) = �2

1
+ �2

1
 , and 

Var(�̃Y ) = �2
2
+ �2

2
 . Assuming that the two completely random 

terms are uncorrelated, we have Cov(�X , �̃Y ) = �1�2.
We only need to select a subset of ZD as instruments, and 

have the Bayesian MR model (Berzuini et al. 2020)

where Zj ∈ ZD . To make causal parameter � identifiable, 
we assume that not all IVs selected take pleiotropic effects 
(i.e., some components of ��� are zero) and impose a shrink-
age prior on ��� under the Bayesian framework (Berzuini et al. 

(7)

X|Z,U ∼ N

(
�0 +

J∑

j=1

�jZj + �1U, �2
1

)

Y|X, Z,U ∼ N

(
�0 + �X +

J∑

j=1

�jZj + �2U, �2
2

)
,

U ∼ N(0, 1).

2020). The Bayesian estimation is conducted using Markov 
Chain Monte-Carlo (MCMC) with Rstan and PyMC. The 
first half of the iteration is used for burn-in, and the second 
half is used for sampling.

BNMR can be extended to binary outcomes by modifying 
the Eq. 7 to probit or logistic regressions, i.e.,

where the link function h(⋅) can be inverse-probit or 
inverse-logit.

We compare estimates of BNMR with other IV selection 
and MR estimation approaches. We implement PCA with R 
package stats and penalized regressions with R package glm-
net, where 10-fold cross validation is used to determine the 
best value of � . Compared methods are implemented with the 
R packages AER, ivmodel, MendelianRandomization, cause, 
R2BGLiMS, and CIIV. We implement BNMR as an R pack-
age, with source codes available at https://​github.​com/​sjl-​sjtu/​
bnmr2.

Simulations

We use both simulated and real genomics from UK Biobank in 
simulations. For simulated genomics, k independent loci sam-
pled from multinomial distributions, whose genotype frequen-
cies satisfy the Hardy–Weinberg equilibrium (HWE), with the 
effect allele frequency � from U(0.05, 0.95). m correlated loci 
for each locus are simulated according to LD squared cor-
relation coefficient ( r2 ) (Pritchard and Przeworski 2001) that 
sampled from U(0.01, 0.99), and genomics with p = k(m + 1) 
loci are synthesized. Real genomic data used to simulate phe-
notypes are derived from variants on chromosomes 10, 17 and 
22 in the European ancestry population of UK Biobank.

Phenotypes are generated from linear model

and

with causal effect � = 0.5 , Gm from a subset of Gj . Con-
founder U is generated from the standard Gaussian distribu-
tion N(0, 1) , with coefficients �x = �y = 1 . Variants affecting 
X are randomly selected from the simulated genome, with 
effect size �j ∼ 0.1 + |N(0, 0.052)| . Variants affecting Y are 
either unilateral (those only affect Y) or pleiotropic (those 
that also affect X). For unilateral variants �k ∼ N(0.1, 0.052) , 
and for pleiotropic variants �j ∼ N(�� , 0.05

2) , with �� = 0 

(8)Y|X, Z,U ∼ Bernoulli

(
h(�0 + �X +

J∑

j=1

�jZj + �2U)

)
,

(9)X = �0 +
∑

j

�jGj + �xU + �x, �x ∼ N(0, �2
x
),

(10)

Y = �0 + �X +
∑

k

�kGk

unilateral

+
∑

m

�mGm

pleiotropic

+ �yU + �y, �y ∼ N(0, �2
y
),

https://github.com/sjl-sjtu/bnmr2
https://github.com/sjl-sjtu/bnmr2
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(balanced pleiotropy) or �� = 0.05 (directional pleiotropy). 
Although unilateral loci do not directly affect X, they can 
perform as a background noise to interfere IV selection 
through gene interactions. We utilize 100 replicates for each 
scenario and report the average.

For scenarios with non-additive genetic effects, we simu-
late phenotypes using more complicated polygenetic models 
with simple multiplicative effects, interactive multiplicative 
effects, and interactive threshold effects (Marchini et al. 
2005). Details can be found at Supplementary Note SN3.

Results

BNMR can efficiently identify effect variants 
from numerous weak, interacting variants with high 
precision in learning stage

We first compare the fine-mapping performance of RGF 
with different hyperparameters and structure learning algo-
rithms in simulated datasets (Fig. 2). RGF exhibits a lower 
false discovery rate (FDR) and a higher AUC, with increas-
ing subsample sizes and numbers of subsamples, though this 
improvement is accompanied by an increase in time con-
sumption. Constrained-based approaches yield lower FDR, 
while the score-based approaches are superior in speed. As 
the selection threshold increases, the number of identified 
variants diminishes with increased precision.

Fig. 2   The performance of the RGF with different hyperparam-
eters and BN structure learning methods in simulations. a The per-
formance and time consumption of RGF with different numbers of 
subsampling variants using the Hill-Climbing (hc) algorithm. b The 
performance and time consumption of RGF with different numbers of 
subsampling individuals using the hc algorithm. c The performance 
and time consumption of RGF with different numbers of subsam-
ples. d The performance and time consumption of RGF with different 
BN structure learning methods. We evaluate score-based approaches 
including hc and tabu, constrained-based approaches including sta-

ble PC (pc.stable), Incremental Association (iamb), and Grow-Shrink 
(gs), as well as hybrid learning methods including Max-Min Hill-
Climbing (mmhc) and Restricted Maximization (rsmax2). The lines 
show the corresponding FDR and AUC, while the gray bars display 
the changes in consumed time (min). e The ROC curve for RGF 
( ns = 2000, ps = 120, r = 1000 ). f The relationships among selection 
threshold ( �∗ ), number of selected variants, and FDR. Simulated data 
size: n = 5000 , p = 2000 , with 100 true effect variants for the expo-
sure. FDR: false discovery rate. AUC: area under the receiver operat-
ing characteristic (ROC) curve
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Compared to the conventional association test (linear 
regression), RGF, LD stepwise pruning, and penalized 
regressions (especially lasso and elastic net) can all reduce 
FDR, while the RGF achieves the highest precision, per-
forming as a effective tool in prioritizing candidate effect 
variants and identifying true effect variants ( ZD ) (Fig. 3). 
Before employing these variable selection strategies, we 
conduct pre-filtering to reduce the number of candidate vari-
ants. A more strict P threshold before RGF increases the 
precision in top variants but may reduce the recall. A thresh-
old of around 1

p
 to 0.01

p
 may be proper. Besides, adjacency 

score can be regarded as the confidence that the variant 
belongs to ZD , and thus, it is also an assessment of 

instrument strength. The correlation between the adjacency 
score and the commonly used F statistics (Fig. S2) indicate 
that RGF is capable of choosing instruments reliable rele-
vance to reduce weak-instrument bias.

GWAS becomes tricky when dealing with non-additive 
genetic effects (Tam et al. 2019). We simulate phenotypes 
from the combination of three interacting polygenetic mod-
els, including simple multiplicative effects, interactive mul-
tiplicative effects, and interactive threshold effects (Sup-
plementary Note SN3) (Marchini et al. 2005). The results 
show that RGF performs well in settling the puzzle of gene 
interaction and epistasis (Fig. S4).

Since genotypes are notoriously difficult to simulate, we 
also generate phenotypes using the same procedures (Eq. 10) 

Fig. 3   False discovery rate (FDR) of different IV selection strat-
egies in simulations. a FDR of RGF. b FDR of LD stepwise prun-
ing. r2 : correlation thresholds for LD pruning. c FDR of penalized 
regressions. � is set to be 1.0 (Lasso), 0.5 (elastic net), and 0 (ridge 
regression), with penalty factor � determined by 10-fold cross 
validation. d FDR of GWAS lead SNPs. Variants are pre-filtered 

according to specific GWAS P-value thresholds before LD prun-
ing, penalized regressions, or RGF. Simulated data size: n = 10,000 , 
p = 10,000 , with 300 true effect variants for each trait. The environ-
mental variance ( �2

x
) for X

2
 is imposed to be twice as much as that of 

X
1
 to represent traits with lower heritability. RGF is conducted with 

ns = 2000, ps = 150, r = 5000 using hc algorithm
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but based on real genotype data from the UK BioBank. 
Using the synthetic datasets, we demonstrate the adapta-
tion of RGF to different scales of genomes (Fig. 4). RGF is 
capable of handling the complex structure of real genetic 
data and exhibits good adaptability to datasets with differ-
ent scales.

BNMR can effectively reduce mean square 
error of estimates, enhance statistical power, 
and is robust to horizontal pleiotropy in inference 
stage

We first compare the performance of BNMR to other exist-
ing MR approaches (Supplementary Table S5), including 
two-stage least square (TSLS), limited information maxi-
mum likelihood ratio (LIML) (Boehm and Zhou 2022), 
inverse-variance weighted (IVW) (Burgess et al. 2013), 
MR-Egger (Bowden et al. 2015), weighted median (Bowden 
et al. 2016), weighted mode (Hartwig et al. 2017), JAM-MR 
(Gkatzionis et al. 2021), CAUSE (Morrison et al. 2020), 
and CIIV (Windmeijer et al. 2021) (Fig. 5a). We include 
two types of pleiotropic loci in our simulation: pleiotropy 
loci that independently affect exposure and outcome, or the 
effects on the exposure and outcome correlated resulting 
from gene interaction like linkage. For each scenario, we 
examine the performance of various methods under settings 
where the expected average pleiotropic effect of all loci was 
either 0 (balanced pleiotropy) or non-zero (directional plei-
otropy). Most prevailing approaches perform relatively well 
in balanced pleiotropy, but fail to cope with scenarios with 
complex directional and correlated pleiotropy. Due to its 

sensitivity to the InSIDE assumption, MR-Egger performs 
noticeably worse when the number of correlated pleio-
tropic variants increases. Some two-sample methods, like 
CAUSE, confront an inflated estimation variance, and bias 
from sample overlap when applying to one-sample studies 
(Burgess et al. 2016). Methods based on plurality rule in a 
broad sense such as weighted median and mode estimators 
exhibit commendable stability. In general, BNMR is supe-
rior to the existing approaches in terms of mean squared 
error (MSE), particularly due to its smaller variance of esti-
mates, yielding augmented statistical power. Despite relying 
on the InSIDE assumption, the process of using RGF for IV 
selection enhances the robustness of the InSIDE assumption, 
making it more resilient to correlated pleiotropy arising from 
gene–gene interactions.

To show the bonus BN brings to the conventional 
Bayesian MR, we then evaluate the improvement in 
Bayesian MR estimation by using IVs obtained from BN 
(BNMR) compared to using GWAS lead SNPs directly 
as IVs (BMR). A noticeable reduction in MSE can be 
observed when there is presence of correlated pleiotropy 
by gene interaction (Fig. 5b). This enhancement primar-
ily manifests in the attenuation of estimated variance in 
balanced scenarios, while both bias and variance deflate 
when the pleiotropic effect is directional. To better 
understand the role of BN, we examine the performance 
of RGF-selected IVs on other traditional MR methods 
(Fig. 5c). Due to overlapping samples in single-sample 
designs and the requirement for IVW and MR-Egger to 
use independent IVs, while RGF aims to identify IVs 
that have a direct impact on the exposure (which may not 

Fig. 4   Performance of BNMR on simulated phenotypes based on real 
genotypes from the UK Biobank. a The ROC curves for real genotype 
data with different sample size (n). Here p is fixed at 20,000. b The 

ROC curves for real genotype data with different genome size (p). 
Here n is fixed at 5000



	 Human Genetics



Human Genetics	

be independent of each other), the use of RGF-selected 
IVs does not perform well and even increases bias when 
using IVW estimator. Even so, on the other hand, when 
using MR-Egger estimator, the use of RGF-selected IVs 
reduced bias and variance in estimation compared to IVs 
obtained through LD pruning. We believe this is because 
MR-Egger and Bayesian MR are based on similar assump-
tions, the InSIDE assumption, requiring that the effect 
of Z on X and the pleiotropic pathways from Z to Y are 
independent. It is violated when Z affects the confounder 
U that affects both X and Y (i.e., correlated horizontal 
pleiotropy). If this correlated horizontal pleiotropy is 
caused by gene–gene interactions, where U is another 
genetic locus Z′ (Fig. 1c), RGF will tend to select Z′ as 
IV ensuring that the InSIDE assumption is still satisfied. 
Therefore, RGF enhances the robustness of the InSIDE 
assumption.

We also conduct sensitivity analysis on the instru-
ment numbers and iterations, and different shrinkage 
priors (Van Erp et al. 2019) (Fig. 5, Supplementary Note 
SN4–SN5). Bias increases when there are too many or 
too few instruments. BNMR estimates are not sensitive to 
priors in general, despite the fact that uniform spike and 
slab prior is a bit more inefficient than the others based 
on the error bars (Fig. 5d). The Bayesian Lasso prior 
shows the fastest sampling speed and a deflated standard 
error, but has a slightly higher bias. The horseshoe prior, 
although slightly less efficient, is superior in the perfor-
mance of convergence due to the lowest Rhat (Table S4 
and Fig. S5).

BNMR with large‑scale BioBank‑level data 
vindicates causality from erythrocyte‑related traits 
to blood pressures

To highlight the practical significance and applicability of 
our method on extensive modern genetic datasets, we pro-
vide illustrative examples of two real-world studies featuring 
both continuous and binary outcomes, utilizing data sourced 
from the UK BioBank.

Hematological indices usually vary in a variety of physio-
logical processes and are potential indicators for related dis-
orders. Correlational studies have proposed that erythrocyte-
related characteristics, including red blood cell count (RBC), 
hemoglobin concentration (HGB), hematocrit (HCT), the 
proportion of RBCs to the plasma, and mean red cell volume 
(MCV) (Enawgaw et al. 2017), are in strong correlation with 
systolic and diastolic blood pressures (SBP and DBP), and 
abnormalities of erythrocytes might be indicators of some 
cardiovascular and cerebrovascular diseases such as hyper-
tension (Tsuda 2020).

To examine the causal effects of erythrocyte parameters 
on blood pressures, we involve 246,659 participants of Cau-
casian ancestry, self-reported as free from hypertension or 
other cardiovascular diseases (UK Biobank Non-cancer Ill-
ness Coding 1065-1094), and with available blood routine 
measurements at the time of enrollment. Genome quality 
control is conducted using PLINK 2.0, with corresponding 
thresholds for the SNP missing rate, minor allele frequency 
(MAF), and HWE test are 0.05, 0.01, and 1e−6. Fast pos-
terior sampling with the large dataset is conducted with the 
Python packages PyMC and JAX. To increase power, we 
conducted preliminary GWAS filtering using summary sta-
tistics from a different dataset of the same ethnic group but 
with distinct samples (Astle et al. 2016).

We exert two pre-filtering strategies to reduce the amount 
of candidate variants and then conduct BNMR analysis. The 
first strategy utilizes a more stringent GWAS P threshold of 
1e−20, while the second strategy employs a looser P thresh-
old of 5e−8, followed by LD clumping. The results (Fig. 6e) 
consistently show that RBC, HGB, and HCT show signifi-
cant positive effects on both DBP and SBP, and the effect 
magnitude is larger on SBP than on DBP. Whereas MCV 
shows a non-significant negative effect on blood pressure 
instead. Alternative approaches use top GWAS significant 
SNPs after LD clumping as instruments, and the varied and 
even conflicting results (Table S5) remind us of the impor-
tance of MR methodology. MR-Egger test shows that all 
causal relationships are not significant. On the other hand, 
TSLS indicates that RBC, HGB, and HCT have a significant 
effect on DBP but not on SBP, while CIIV estimates a posi-
tive effect on DBP and a negative effect on SBP.

Comparing the causal variants identified by RGF and 
probabilistic fine-mapping methods such as Susie (Wang 

Fig. 5   Performance on causal effect estimation in simulations. a 
Averaged mean square errors (MSE) of different MR approaches. 
Robust regression and penalized weights are adopted in IVW and 
MR-Egger. IVs used in TSLS, LIML, IVW, MR-Egger, weighted 
Median and Mode, and CIIV are obtained through LD stepwise prun-
ing. IVs used in JAM-MR, CAUSE, and BNMR are selected using 
their own filtering procedures from GWAS lead SNPs. Standard 
errors (SEs) of CAUSE are transformed from confidence intervals, of 
BNMR are calculated from MCMC posterior sampling. The scenar-
ios are represented as “the number of independent pleiotropic vari-
ants (variants with independent direct effects on both X and Y) + the 
number of correlated pleiotropic variants (the effects on X and Y are 
correlated)”. For each scenario, the pleiotropic effects are simulated 
to be either balanced (mean pleiotropic effect �Y = 0 ) or directional 
(mean pleiotropic effect �Y = 0.05 ). Each bar represents the aver-
age MSE of the estimation for the respective method in that scenario 
with error bar showing the empirical standard error of mean MSE. 
The darker section at the bottom represents the squared bias, while 
the lighter section at the top represents the variance. b MSE of Bayes-
ian MR using IVs from BN (BNMR) and using the same number of 
IVs from GWAS lead SNPs (BMR). c MSE of IVW and MR-Egger 
using IVs from LD pruning and RGF. Both estimators were used their 
penalized robust versions. d The average bias and error bars under 
different IV numbers (left), iterations (middle), and shrinkage priors 
(right)
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et al. 2020) is quite interesting. In general, RGF focuses on 
the genomic global landscape, while fine-mapping methods 
focuse more on local features. Taking RBC as an example, 

if we coarse fine-mapping using both methods on all candi-
date loci after preliminary screening, we would find that the 
majority of signals are shared between the two approaches 
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(Fig. 6f). When we specifically examine the local struc-
ture near a GWAS peak (e.g., the region from 41,600,000 
to 42,200,000 on chromosome 6), although Susie tends 
to identify more causal loci, the most significant signal 
(rs112233623) is the same for both methods (Fig. 6g). Con-
sidering that in IV selection, we are more concerned about 
false-positive signals in GWAS caused by genetic correlation 
and winner’s curse, the relative conservatism of RGF is not 
a disadvantage.

The underlying mechanisms may relate to blood viscos-
ity. Higher RBC, HGB, and HCT mean an increase in blood 
viscosity and peripheral resistance to blood flow, resulting in 
hypertension (Enawgaw et al. 2017). Besides, erythrocytes 
and hemoglobin also influence nitric oxide bioavailability, a 
crucial signal in the regulation of vessel psychology such as 
vasodilatation, thrombosis inhibition, and vessel formation 
(Helms et al. 2018). Although the molecular mechanisms 
still remain to be uncovered, the findings indicate that those 
hematological indices may be not only indicators but poten-
tial therapeutic targets for hypertension.

BNMR indicates that increased leukocytes 
contribute to the risk of depression

The neuro-immune interaction has been an appealing topic 
in recent years. Widespread bidirectional circuits exist 
between the two systems. The nervous system regulates 
immune activity and cytokine balance via the direct con-
nection of sympathetic and parasympathetic nerves, and 
some neurotransmitters and neuroendocrine hormones can 
also serve as immunomodulators. Meanwhile, the immune 
system participates in the elimination and plasticity of 
synapses during development and modulates brain activ-
ity as well (Dantzer 2018). Immune-related hematological 
biomarkers provide a new insight into the pathological 
mechanisms of many psychiatric disorders. For instance, 
immune dysregulation has long been regarded associ-
ated with psychological disorders including depression 

(Drevets et al. 2022). Recent studies report the correlation 
between leukocyte count and depression (Reay et al. 2022; 
Sørensen et al. 2023).

We leverage disease records from UK Biobank and 
construct a case–control study by randomly selecting the 
same number of healthy individuals of the same ethnic-
ity to assess whether leukocyte count, as well as its two 
subtypes, lymphocyte and monocyte counts, will causally 
affect depression. Subjects with extreme values exceeding 
3 � are excluded, and 22,324 cases and 22,861 controls are 
included in the analysis. All participants are of Caucasian 
ancestry.

Significant differences in leukocyte, lymphocyte, and 
monocyte counts are manifested between the case and con-
trol groups (Fig. 7a). Results from BNMR and weighted 
median indicate that an elevated leukocyte count will 
increase the risk of depression (Fig. 7b). The reciprocal 
MR analysis supports the causal direction from leukocyte 
count to depression. However, when we examine the two 
subtypes of leukocytes—lymphocytes and monocytes—
this significant positive causal relationship disappears. 
This suggests that the causal mechanism from immune 
cells to mental disorders is more complex than anticipated, 
and warrants a careful examination of the influence of var-
ious cell type counts and compositional ratios (Sørensen 
et al. 2023).

We further conduct gene mapping and functional annota-
tion by FUMA (Watanabe et al. 2017) using the top 1500 
variants identified in RGF, which maps 273 depression-
related protein coding genes. Functional analysis shows 
that these genes are enriched in the KEGG systemic lupus 
erythematosus and glycosaminoglycan Degradation pathway 
(Fig. 7c), both related closely with immune system (Handel 
and Dyer 2021). Depression-related genes also indicates 
enrichment in many cytokine and immune response path-
ways, including reactomes related to signaling of interleukin 
9, Wnt, biocarta, and butyrophilin family (Supplementary 
Fig. S6), consistent with previous study (Wray et al. 2018). 
Depressive symptoms often share resemblance with inflam-
mation-induced syndrome such as lethargy and inactivity, 
and the findings support role of immunity in the develop-
ment of depression.

Immune targets for therapeutic development in depression 
has become a promising area in recent years (Drevets et al. 
2022). Our analysis supports the idea of modulating immune 
cell composition as an intervention for psychological depres-
sion. However, the results should still be interpreted with 
caution due to recipient inclusion and sample size, popula-
tion heterogeneity, and other potential confounding factors. 
Noncollapsibility of the logistic model may damage the esti-
mation of binary responses (Schuster et al. 2021). Collabora-
tion with evidence by means of triangulation (Lawlor et al. 
2016) is vital to drawing a solid and reliable conclusion.

Fig. 6   Causal relationships from erythrocyte-related traits to blood 
pressures. a–d Manhattan plots for RBC (a), HGB (b), HCT (c), and 
MCV (d), where the vertical coordinate shows the negative logarithm 
of the GWAS association test P-values for each locus. e Forest plot 
of the causal estimations. The units of RBC, HGB, HCT, MCV, and 
blood pressure are million/mm3 , g/dl, %, fL, and mmHg. We adopt 
two different pre-filtering strategies: one uses a more strict GWAS 
P threshold (1e−20), the other uses a looser P threshold (5e−8) 
and then conducts LD clumping (threshold: window = 10,000 kb, 
r2 = 0.01, MAF=0.01). The variant loci obtained from pre-filtering 
are then further selected via RGF ( ns = 4000 , ps = 150 , r = 5000 ) 
to identify 20 instruments for each exposure, shown in Supplemen-
tary Note SN6, and sample 4 chains with 5000 iterations per chain 
in MCMC. f Fine-mapping results of Susie and RGF using all vari-
ants after pre-filtering using the second strategy. g Fine-mapping 
results of Susie and RGF in the GWAS peak region chr6 41,600,000–
42,200,000
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Discussion

Causality is challenging to identify in observational studies 
due to unmeasured confounders. The introduction of genetic 
instruments in MR makes it possible to estimate causal effect 
in the presence of unobserved confounders, making MR 
increasingly appealing in real-world studies.

Tackling imperfect IVs has always been a tricky issue in 
MR. We propose BNMR to address the challenges by lev-
eraging machine learning techniques and integrating causal 
discovery and inference. We use RGF to reduce FDR and 
improve statistical power when selecting instruments with 
true effects from numerous correlated weak variants due to 
polygenicity, epistasis, and LD. Then we control horizontal 
pleiotropy by imposing a shrinkage prior on the Bayesian 
MR. The selection of SNPs with direct effects on exposure 

enhances the robustness of InSIDE assumption and reduce 
correlated pleiotropy due to gene interaction, and the avoid-
ance of false-positive signals in IV selection also contributes 
to reducing weak-instrument bias and enhancing statistical 
power.

To guarantee the faithfulness and sufficiency of causal 
diagrams, we impose constraints in RGF that limit the 
nodes in the graph to only include genetic loci and a single 
exposure. We tend not to involve multiple traits in a causal 
graph because the common causes of those traits may not 
be observed. Another advantage is that the criteria ‘not 
d-separated from exposure by other variants’ can be simply 
expressed as ‘adjacent to exposure’ in this scenario, which 
is convenient for DIE partition and IV selection.

Bayesian estimation with imposed shrinkage priors is 
conceptually similar to regularization in the traditional 

Fig. 7   The relationships between immune cell count and psychiatric 
disorders. a Differences in immune cell counts between the case and 
control groups. The significance level is calculated using the two-side 
T test. b Forest plot of the causal estimations of BNMR, penalized 
robust MR-Egger, and penalized weighted median. The unit of blood 
cell count is billion cells per liter. For BNMR, we select 20 instru-

ments for each exposure via RGF ( ns = 5000 , ps = 150 , r = 5000 ), 
shown in Supplementary Note SN6, and sample 4 chains with 5000 
iterations per chain in MCMC. For MR-Egger and weighted median, 
GWAS lead variants after LD clumping are selected as instruments. 
c KEGG pathway enrichment of genes mapped by depression-related 
SNPs
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model but with some obvious advantages, like simultane-
ously estimated penalty parameters, easily obtained cred-
ible intervals, and intuitive interpretation. In addition, 
domain-specific knowledge can be included as an informa-
tive prior. BNMR are not sensitive to priors, though we 
recommend horseshoe prior for better convergence perfor-
mance if no additional information is accessible.

Although large-scale biobanks containing genotypes 
and phenotypes are now available, an increasing number 
of studies tend to report summary association statistics 
instead due to concerns on privacy and security. Bayesian 
meta-analysis is applied to assess pooled genetic relevance 
(Sun et al. 2022). Recent work has started to focus on 
learning causal diagrams with summary data (Zhang et al. 
2017), while arduous task still remains.

BNMR is an example of post-selection inference and 
faces the issue that the inference stage does not account 
for uncertainty in the selection stage, causing more volatile 
results. The model also confronts computational chal-
lenges in BN learning and MCMC sampling, especially 
with increasing numbers of samples and variables. BN 
structural learning is an NP-hard problem. We leverage the 
bagging technique in ensemble learning and propose the 
RGF to split the whole genetic pattern into a series of sub-
graphs. The number of candidate variants is restricted via 
pre-filtering by GWAS association tests before RGF, since 
the removal of variants with low correlations will not 
influence the network structure severely due to the modu-
larity of the causal diagram. To achieve a balance between 
sufficiently high precision and acceptable time consump-
tion, we suggest conducting pre-filtering using a GWAS P 
threshold of approximately 1

p
 to 0.01

p
 and setting the value 

of psr to be at least 100 times greater than the number of 
variants in RGF to ensure adequate sampling for each vari-
ant. We endorse the use of at least 4 chains and at least 
2000 iterations in MCMC. For large-scale datasets, con-
solidation of posterior sampling in subsamples may be 
feasible.

In summary, BNMR is a practical model to prioritize 
and select proper instruments from massive, interacting, 
and weak variants and obtain pleiotropy-robust causal 
effect estimates. With accumulated genomic data avail-
able, BNMR will contribute to revealing more causal rela-
tionships and discovering potential therapeutic targets with 
real-world evidence.
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